
AEROTHERMODYNAMIC CYCLE DESIGN AND OPTIMIZATOIN 

METHOD FOR AICRAFT ENGINES 
 

 

 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Sean T Ford 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Masters of Science in the 

School of Aerospace Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

December 2014 

 

 

 

 

Copyright © 2014 by Sean T Ford 



 

 

AEROTHERMODYNAMIC DESIGN AND OPTIMIZATION METHOD 

FOR AIRCRAFT ENGINES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Dr. Dimitri Mavris, Advisor 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. Brian Kestner 

GE Aviation 

 

Dr. Jeff Schutte 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

 

 

Date Approved:  31 July 2014 





iii 

 

ACKNOWLEDGEMENTS 

 

 

 

There are many people I would like to acknowledge, who without their support I would not have 

come so far. First is my advisor Professor Dimitri Mavris who provided me with the opportunity 

to pursue this thesis and has guided me on many aspects of not just this thesis but my education. 

His tireless leadership and mentorship has been a great source of encouragement. He has taught 

me not only the skills and knowledge to be a better engineer, but a better overall person. 

I would also like to acknowledge the community at ASDL including Dr. Jeff Schutte. They 

have been an amazing source of help and guidance throughout this process. And last but most 

definitely not least I would like to acknowledge Dr. Brian Kestner. He has been a constant source 

of help through this thesis and my education at Georgia Tech. He has been instrumental in 

helping me push further than I thought possible. Without his help and occasional kicks in the 

right direction I would not have made it so far. 

  



iv 

 

TABLE OF CONTENTS 

 

 

 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

NOMENCLATURE ...................................................................................................................... xi 

CHAPTER 1: Introduction and Motivation .................................................................................... 1 

1.1 The Need for a New Engine Architecture ................................................................. 2 

1.2 The Need for an Optimization Method ..................................................................... 4 

CHAPTER 2: Background Information.......................................................................................... 6 

2.1 Variable Cycle Engines and Variable Geometry ...................................................... 7 

2.1.1 VCE History.............................................................................................................. 7 

2.1.2 Variable Geometry .................................................................................................... 8 

2.1.2.1 Variable Area Bypass Injector ........................................................................... 8 

2.1.2.2 Variable Area Nozzle ........................................................................................ 9 

2.1.2.3 Variable Inlet Guide Vanes ............................................................................. 10 

2.1.2.4 Variable Nozzle Area Turbine ......................................................................... 11 

2.2 Current Paradigms in Aero Propulsion Design and Cycle Analysis ....................... 12 

2.3 Optimization Techniques for an Engine Model ...................................................... 15 

2.4 Research Questions and Hypotheses ...................................................................... 19 

CHAPTER 3: Research Formulation ............................................................................................ 23 

3.1 Solver Based Optimization Overview .................................................................... 23 



v 

 

3.1.1 SBO Process............................................................................................................ 25 

3.1.1.1 Objective Identification and Definition of Optimum ...................................... 26 

3.1.1.2 Setup ................................................................................................................ 27 

3.1.1.3 Execution ......................................................................................................... 28 

3.1.2 MDP ........................................................................................................................ 28 

3.1.2.1 Requirements and Technology Definition Phase ............................................ 28 

3.1.2.2 Setup Phase ...................................................................................................... 28 

3.1.2.3 Execution Phase ............................................................................................... 29 

3.1.2.4 MDP Initial Iterate ........................................................................................... 29 

3.2 Theoretical Framework ........................................................................................... 30 

3.2.1 Thrust and Efficiency .............................................................................................. 31 

3.2.2 Cycle Solver: Modified Newton-Raphson Method ................................................ 35 

3.2.3 Local Linear Approximation................................................................................... 38 

3.2.4 Mathematical Treatment of Optimization Problem ................................................ 39 

3.2.5 Practical Treatment of Optimization Problem ........................................................ 40 

3.3 Assumptions and Limitations ................................................................................. 42 

3.4 OMDP Optimization Strategies .............................................................................. 43 

3.5 Procedure ................................................................................................................ 44 

CHAPTER 4: Implementation ...................................................................................................... 46 

4.1 Modeling Environment ........................................................................................... 46 

4.2 SBO Setup for NPSS .............................................................................................. 47 

4.3 Selection of Objective Function and Optimization Variables ................................ 49 

4.4 Model Concepts ...................................................................................................... 50 

4.4.1 Analytical Model Description and Solver Setup .................................................... 50 

4.4.2 SFTF Engine Model Description and Solver Setup ................................................ 53 



vi 

 

4.4.2.1 Solver Setup for SBO with SDP ...................................................................... 55 

4.4.2.2 Solver Setup for OMDP .................................................................................. 56 

CHAPTER 5: Results ................................................................................................................... 60 

5.1 Experiments 1-3, Solver Based Optimization Proof of Concept ............................ 60 

5.1.1 Setup and Implementation ................................................................................... 60 

5.1.2 Results ................................................................................................................. 61 

5.2 Experiment 4, SDP Engine Model Optimization .................................................... 66 

5.2.1 Setup and Implementation ................................................................................... 67 

5.2.2 Results ................................................................................................................. 68 

5.3 Experiments 5-10: Engine Model Optimization with SBO and OMDP ................. 71 

5.3.1 Experiment 5: Intra-point Optimization, Single Variable, Single Objective .......... 73 

5.3.1.1 Results ............................................................................................................. 73 

5.3.2 Experiment 6 Cross-point Optimization, Single Variable, Single Objective ......... 76 

5.3.3 Experiment 7: Intra-point Optimization, Multi-variable, Multi-objective.............. 80 

5.3.4 Experiment 8: Cross-point Optimization, Multi-variable, Single Objective .......... 86 

5.3.4.1 Results ............................................................................................................. 86 

5.3.5 Experiment 9: Cross-point Optimization, Single Variable, Multi-objective .......... 90 

5.3.5.1 Results ............................................................................................................. 91 

5.3.6 Experiment 10: Optimization Starting Point Study ................................................ 91 

CHAPTER 6: Conclusions ........................................................................................................... 96 

6.1 Research Questions and Hypotheses ...................................................................... 96 

6.2 Research Contributions ........................................................................................... 97 

6.3 Recommendations for Future Work........................................................................ 98 

APPENDIX A: NPSS ANALYTICAL MODEL FILES ............................................................. 99 



vii 

 

APPENDIX B: NPSS OMDP MODEL FILES .......................................................................... 106 

REFERENCES ........................................................................................................................... 127 

 

  



viii 

 

LIST OF TABLES 

 

 

 

Table 1: SBO Theory Nomenclature ............................................................................................ 31 

Table 2: Solver Setup for Analytical Functions of Two Variables ............................................... 53 

Table 3: Constraint/Dependent Pairings ....................................................................................... 53 

Table 4: SFTF Model Solver Setup .............................................................................................. 56 

Table 5: Independent/Dependent Combinations for Experiments 5-10 ....................................... 57 

Table 6: Constraint/Dependent Pairings for Experiments 5-10 .................................................... 58 

Table 7: Design Point Mapping Matrix for Experiments 5-10 ..................................................... 59 

Table 8: SBO Results – Unconstrained Analytical Functions ...................................................... 62 

Table 9: SBO Results (Constrained) ............................................................................................. 63 

Table 10: SBO Comparison for Rosenbrock Function ................................................................. 66 

Table 11: Baseline Values for SFTF MDP Model........................................................................ 72 

Table 12: Experiment 5 – Baseline vs OMDP Results ................................................................. 75 

Table 13: Experiment 6 – Baseline vs OMDP Results ................................................................. 80 

Table 14: Experiment 7 – Baseline vs OMDP Results ................................................................. 82 

Table 15: Experiment 8 – Baseline vs OMDP Results ................................................................. 90 

Table 16: OMDP Starting Point Results ....................................................................................... 94 

 

 

  



ix 

 

LIST OF FIGURES 

 

 

 

Figure 1: 3-D Illustration of MFTF25 .............................................................................................. 3 

Figure 2: Notional Illustration of Double Bypass VCE1 ................................................................ 4 

Figure 3: Example of SFTF Station Numbering27 .......................................................................... 6 

Figure 4: VAPCOM28 ..................................................................................................................... 7 

Figure 5: VABI Position Diagram .................................................................................................. 9 

Figure 6: EJ200 Variable Exhaust Nozzle37 ................................................................................. 10 

Figure 7: Vector Diagram for VIGV at Constant Rotor Incidence and Deviation Angle ............ 11 

Figure 8: Turbofan Cycle Calculation43 ........................................................................................ 13 

Figure 9: Nested Optimization Loops for Genetic Algorithm1 ..................................................... 17 

Figure 10: Cycle Design and Optimization Venn Diagram .......................................................... 19 

Figure 11: Methodology Overview ............................................................................................... 24 

Figure 12: Process Flowchart for Solver Based Optimization Method ........................................ 26 

Figure 13: Generalized Thrust Producing Device29 ...................................................................... 32 

Figure 14: Typical Turbojet configuration 26 ................................................................................ 34 

Figure 15: Typical Separate Flow Turbofan configuration26 ........................................................ 34 

Figure 16: Information Flow Between Main Run File and LMG Run File .................................. 47 

Figure 17: Part Power Performance Optimization Objectives Throughout Flight Envelope19 .... 49 

Figure 18: Brown’s Analytical Test Function .............................................................................. 51 

Figure 19: Rosenbrock Function ................................................................................................... 52 

Figure 20: NPSS Model Schematic of SFTF ................................................................................ 54 

Figure 21: Brown’s Test Function Optimization Path, Unconstrained......................................... 63 

Figure 22: Brown’s Test Function Optimization Path, Constrained............................................. 64 

Figure 23: Rosenbrock Function Optimization Path .................................................................... 65 

Figure 24: Real and Ideal Turbofan TSFC vs FPR for HPCPR=24, M0=0.926 ............................ 67 

Figure 25: SFTF Optimization Using BPR, HPCPR = 11.6, M0 = 0.8......................................... 68 

Figure 26: Effect of Linear Model Perturbation Size on Objective Function............................... 70 

Figure 27: Effect of Linear Model Perturbation Size on Optimization Variable ......................... 71 



x 

 

Figure 28: Cruise TSFC vs A16 and d(TSFC)/d(A16) ................................................................. 74 

Figure 29: Effect of Perturbation Size on A16 ............................................................................. 76 

Figure 30: Cruise TSFC vs TOC BPR .......................................................................................... 77 

Figure 31: BPRTOC vs Num. Model Passes ................................................................................... 78 

Figure 32: Calculated TSFCcruise vs BPRTOC ................................................................................ 79 

Figure 33: Num. Model Passes vs BPR and d(TSFCTOC)/d(BPRTOC) .......................................... 83 

Figure 34: Num. Model Passes vs A8Cruise .................................................................................... 84 

Figure 35: Active Optimization Constraint Check Process Flowchart ......................................... 85 

Figure 36: Contour Plot of Cruise A16 and TOC BPR vs Cruise TSFC ...................................... 87 

Figure 37: Insufficient dxLimit Oscillatory Behavior .................................................................. 88 

Figure 38: Effect of Step Size on Number of Model Passes......................................................... 89 

Figure 39: Effect of Starting Point on Num. Model Passes and End Point .................................. 93 

Figure 40: Non-Convex Design Space ......................................................................................... 95 

 

  



xi 

 

NOMENCLATURE 

 

 

 

a0   Speed of Sound 

Advent  Adaptive Versatile Engine Technology 

Ae   Exit Area 

Ai   Inlet Area 

AIAA  American Institute of Aeronautics and Astronautics 

AETD   Adaptive Engine Technology Development 

AFRL   Air Force Research Lab 

BPR   Bypass Ratio 

CDS   Cycle Design Space 

cs   Control Surface 

Cv   Velocity Coefficient 

D   Matrix of partial derivatives of objective function 

𝜕   Partial Derivative 

DPMM Design Point Mapping Matrix 

𝜂𝑝   Propulsive Efficiency 

f    Fuel Fraction 

F   Force 

Fn   Net Thrust 

FAR   Fuel to Air Ratio 

FPR   Fan Pressure Ratio 

HP  High Pressure 

HPC   High Pressure Compressor  

HPCPR  High Pressure Compressor Pressure Ratio 

HPT  High Pressure Turbine 

IGV  Inlet Guide Vane 

ISA  International Standard Atmosphere 

IHPTET  Integrated High Performance Turbine Engine Technology 



xii 

 

LMG  Linear Model Generator 

LP   Low Pressure 

LPC   Low Pressure Compressor 

LPCPR  Low Pressure Compressor Pressure Ratio 

LPT   Low Pressure Turbine 

𝑚̇0  Free Stream Mass Flow 

M0  Free Stream Mach Number 

𝑚̇𝑎  Entrance Mass Flow 

𝑚̇𝐶  Mass Flow Through Engine Core 

𝑚̇𝑒  Exit Mass Flow 

𝑚̇𝑓  Fuel Mass Flow 

𝑚̇𝐹  Mass Flow Through Fan 

MDP   Multi-design Point 

MFTF   Mixed Flow Turbofan 

MOBY Modulating Bypass Ratio 

NASA  National Aeronautics and Space Administration 

NPSS   Numerical Propulsion System Simulation 

OMDP  Optimized MDP 

OPR  Overall Pressure Ratio 

Pa   Atmospheric Pressure 

Pe   Exit Pressure 

R&TD  Requirements and Technology Definition 

𝜌   Air Density 

SAE  Society of Automotive Engineers 

SBO  Solver Based Optimization  

SDP   Single Design Point 

SLS  Sea Level Static 

T4   Burner Exit Temperature 

T4max  Maximum Burner Exit Temperature 

TKO  Takeoff 

TOC  Top of Climb 



xiii 

 

TSFC   Thrust Specific Fuel Consumption 

u   Free Stream Velocity 

ue   Exit Velocity 

ux    Velocity in x Direction 

VAATE  Versatile Affordable Advanced Turbine Engines 

VABI  Variable Area Bypass Injector 

VAPCOM  Variable Pumping Compressor 

VCE   Variable Cycle Engine 

  



xiv 

 

 

SUMMARY 

 

 

 

Gas turbine engines for aircraft traditionally establish the cycle through the process of on-design 

cycle analysis which involves the calculation of the cycle at a single design point. The 

performance of the engine is determined in off design analysis for fixed design choices at all 

flight conditions. Off design analysis can only begin once the design point and size of the engine 

have been chosen. It determines the performance of an engine with fixed design choices at all 

flight conditions and based on the off design performance over the entire aircraft mission, an 

engine can be selected for a particular mission. However, the selection of one design point to set 

the thermodynamic cycle can be difficult. 

Variable geometry components have now been in use for decades. These components can 

alter their geometry and thus the flow through an engine. Typically these components are used to 

improve engine performance and more recently with variable cycle engines. VCE concepts are 

actively being explored as a means to meet competing performance demands of high thrust and 

low fuel consumption placed on aircraft. VCEs provide the possibility for achieving better 

performance in subsonic or supersonic flight and improved airflow matching through the use of 

VG features and additional flowpaths. It if from VCEs and variable geometry that it becomes 

possible to further maximize performance above what is determined from the fixed cycle design 

choices in on design. Thus the need arises for multi and single variable optimization techniques 

for aircraft engines.  

There are a large variety of optimization algorithms available for a wide range of problems. 

Few are designed directly for aerothermodynamic cycle design. In most cases in available 

literature, an algorithm is chosen and then wrapped around the cycle solver. This thesis develops 

a solver based optimization (SBO) method which is able to control cycle design variables at all 

operating conditions to meet the performance requirements while controlling any additional 

variables which may be used to optimize the cycle. This is done while maintaining all operating 

limits and engine constraints to find a balanced and optimum cycle. SBO does this by utilizing 

features which are inherent in many typical cycle solvers, and in particular the common modified 
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Newton-Raphson type cycle solver 

The method efficiently finds cycle designs for a wide range of engine architectures with extra 

degrees of freedom not needed to balance the cycle. Further, SBO can be directly applied to a 

multi-design point methodology to overcome the problem of selecting a single design point to 

size an engine. Selecting one design point in this manner generally results in an oversized engine 

with reduced performance at off design conditions. SBO effectively combines on design, off 

design, and optimization into a single simultaneous implementation. 

Two research questions are identified in this thesis. SBO is demonstrated in this thesis on a 

separate flow turbofan model to explore these questions and test five hypotheses. Ten 

experiments are performed to highlight different aspects of the method. This includes a proof of 

concept on several analytical test functions to demonstrate the efficiency of the method and its 

ability to find a known optimum. It is then demonstrated using the SFTF model which provides 

insight into the implementation of SBO on a real world problem which is highly constraining, in 

the process pointing out several limitations on the method and how it is combined with an MDP 

method. SBO is successfully able to find a balanced and optimum cycle design for an SBO 

model for both the on design and off design spaces. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

 

 

 

This thesis addresses the need for an optimization method which can simultaneously optimize 

and balance an aerothermodynamic cycle. Traditionally for gas turbine engines, the cycle is 

established through the process of on-design cycle analysis which involves the calculation of the 

cycle at a single design point by selecting values of design variables such as fan pressure ratio 

(FPR), overall pressure ratio (OPR), bypass ratio (BPR), and combustor exit temperature (T4). 

Off design analysis determines the performance of an engine with fixed design choices at all 

flight conditions. Off design analysis can only be performed once the design point and size of the 

engine have been chosen. Based on the off design performance over the entire aircraft mission, 

an engine can be selected for a particular mission. However, the selection of a single design point 

to set the thermodynamic cycle can be difficult. 

Over the past several decades engine designs have evolved from piston driven propeller 

aircraft to turbojet and turbofan designs. With them came the advent of variable geometry (VG) 

features which can alter their geometry and thus the flow through an engine. Typically these VG 

components are used to improve engine performance. Now, variable cycle engine (VCE) 

concepts are actively being explored as a potential approach for advanced military or commercial 

propulsion.43 VCEs provide the possibility for achieving better performance in subsonic or 

supersonic flight and improved airflow matching through the use of VG features and additional 

flowpaths.  

The need for an optimization methodology derives from the class of engines known as VCEs. 

“Steady-state operating schedules must be established to set the individual variable geometries, 

to constrain engine operation within acceptable limits, and to achieve the maximum performance 

capability which is potentially available.”43 Multi-variable optimization techniques are required 

for optimizing these designs, as well as multi and single variable optimization for the current 

generation of engines. However, it is important to understand the limitations of optimization 

techniques and that achieving the ‘best’ design can vary based on how best is defined. 
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“Expectations of achieving an absolute best design will invariably lead to maximum 

disappointment.”39 

Thus the optimization method used should be able to control cycle design variables at all 

operating conditions to meet the performance requirements while controlling any additional 

variables which may be used to optimize the cycle. This must be done while maintaining all 

operating limits and engine constraints to find a balanced and optimum cycle. The method 

should combine the cycle balance and optimization to efficiently find cycle designs for a wide 

range of engine architectures with extra degrees of freedom not needed to balance the cycle. 

  This thesis is divided into six chapters. This first chapter provides an introduction and a 

motivation for this optimization methodology. The second chapter provides background 

information on current paradigms in engine design and optimization. The third chapter discusses 

the methodology and the theory for the optimization technique developed, and provides a step by 

step procedure. The fourth chapter describes the implementation and setup of the method. The 

fifth chapter discusses the experiment setup and analysis of the experimental results. Finally, the 

last chapter includes some concluding remarks, summarization of the contributions to the 

engineering field, and suggestions for future work. 

 

1.1 The Need for a New Engine Architecture 

Most military fighter aircraft engines today utilize a low bypass ratio mixed flow turbofan 

(MFTF), such as that shown in Figure 1, in an attempt to reach an optimum balance between 

competing performance requirements. However, a new engine architecture is being pursued that 

can better meet requirements in the form of a variable cycle engine. As the name implies, it can 

operate with two or more thermodynamic cycles, theoretically allowing it to achieve high 

efficiency during cruise and high specific thrust when required at times such as acceleration to 

supersonic flight. 

In designing a military aircraft engine for example, there are several performance parameters 

that designers attempt to optimize. Often these parameters are at odds with each other and arise 

from the fact that military fighters require engines that can operate efficiently at both supersonic 

and subsonic speeds. Two of these parameters are specific thrust and fuel consumption. 

Generally the predominant goal for a fighter aircraft is to achieve a high aircraft thrust to weight 

ratio attained through high engine specific thrust.4 High specific thrust is desirable for a number 
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of reasons including combat maneuvering, supersonic flight, short takeoff, and intercept to name 

a few.1 Normally specific thrust is maximized by using a traditional turbojet or very low bypass 

ratio turbofan. The turbojet offers the best option for high specific thrust at subsonic to low 

supersonic speeds.  

 

 

 

Figure 1: 3-D Illustration of MFTF25 

 

 

Requirements for long duration cruise (i.e. low fuel consumption), loiter, noise reduction, 

and operating costs often are competing demands on the engine which favor a different engine 

architecture, namely, the high bypass ratio turbofan. Most large commercial aircraft utilize a 

form of high bypass ratio turbofan. This allows relatively high specific thrust, some 

improvement of fuel consumption over the turbojet, and does not prohibitively increase the size 

and weight of the aircraft. Engine diameter has a considerable effect on the airframe size and 

weight.4 

Meeting the competing performance demands requires a new engine architecture that is a 

departure from the traditional turbofan and turbojet designs of the past 60 years. In that time 

there has been a considerable amount of research into solving the problems of competing 

performance demands. However, it has been several decades since the Unites States has sought 

to develop an all-new combat aircraft engine.5  

Early jet engines were single stream turbojets. These provided a high level of specific thrust 

by moving a relatively small amount of air very fast. Early turbojets offered poor fuel efficiency 
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however. Later, double stream turbofans were introduced which exhaust air at a relatively slow 

velocity. These give a much lower fuel consumption. The “Holy Grail” of engines would 

effectively combine the best characteristics of both engine types to provide high specific thrust at 

low fuel consumption over the engine’s operating envelope. After decades of research, the type 

of engine envisioned to meet the need is a double bypass variable cycle engine like that shown in 

Figure 2. The US Air Force is currently actively pursuing variable bypass, adaptive engine 

technology in its Advent and AETD programs. AFRL calculates this technology will improve 

engine efficiency by 25% and increase aircraft combat radius by 25-30%.5 With improvements 

like this, it is easy to see why this technology is being pursued. 

 

 

 

Figure 2: Notional Illustration of Double Bypass VCE1 

 

 

1.2 The Need for an Optimization Method 

With the increase in the number of available variable features the question remains as to how 

such variable feature geometries are chosen. Simmons notes that for a VCE of the type shown in 

Figure 2, “just finding locally optimal solutions would require far too great a time investment; a 

truly comprehensive search of the design space would require a more automated process.”1 This 

statement succinctly sums up a problem that has faced VCE designers and those wishing to show 

the extent to which a VCE can offer performance improvements. It also provides motivation for 

Constant Flow with Variable 

 Fan Pressure Ratio 

Separate Modulatable  

3
rd

 Stream 
Variable Area 

Bypass Injector 

Variable Core and Bypass  
Exhaust Nozzles 

Variable Area 

Compressor & Turbines 
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a more automated optimization method. 

There are a large variety of optimization algorithms available for a wide range of problems. 

However, few have been designed to be directly used for aerothermodynamic cycle design. In 

most cases in available literature, an algorithm is chosen and then wrapped around the cycle 

solver. This method has one main advantage – it allows almost any type of optimization 

algorithm to be chosen to best fit the problem at hand. This is generally accomplished by some 

type of nested loop structure where the optimizer varies the available values in one loop, and 

then the cycle solver rebalances the cycle in an inner loop. Both the solver and optimizer iterate 

until a balanced and optimal cycle is found. These loops can be built directly into the 

thermodynamic analysis package, or the cycle solver and optimizer package can be left separate 

and combined through use of a third piece of software such as ModelCenter which combines the 

two. 

There are several drawbacks of the approach just mentioned. First is the need to in some way 

link the optimization package and thermodynamic analysis. This could represent a significant 

amount of time and energy invested in making the two packages compatible. Second, having to 

rebalance the cycle separately from the optimization is typically extremely inefficient.  

Ideally, it would be advantageous to balance the cycle while simultaneously optimizing it. 

Brown (Reference 43) notes that many typical cycle solvers already incorporate much of the 

required information to do this. Firstly, they incorporate the unknown parameters needed to 

balance the cycle. Additionally they are capable of handling the many constraints placed on an 

engine system. And most importantly, they already are capable of computing derivative 

information to determine the search direction and step size. The only remaining piece of 

information required to create a simultaneous optimization and cycle balance method is knowing 

when the optimum has been reached.  
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CHAPTER 2 

BACKGROUND INFORMATION 

 

 

 

This chapter provides the background information necessary to understand the challenges 

associated with engine optimization and the historical backdrop which led to the motivation for a 

new methodology. The first section provides a brief history of VCE research since its beginning 

in the 1960s. The second section discusses the different VG components available in current 

propulsion systems. The third section discusses optimization methodologies in general and their 

specific application to aircraft engines. Throughout this chapter, observations are highlighted 

which lead to the research questions this thesis will answer. 

Before proceeding, it will be helpful to provide a common and general nomenclature for 

aerospace propulsions systems. The Society of Automotive Engineers (SAE) has provided such a 

nomenclature in publishing ARP 755B.48 ARP 755B creates a common nomenclature for 

designating stations for various engine architectures with each station locating thermodynamic 

properties of the flow within the engine. This station numbering system will be used throughout 

the remainder of this thesis. 

 

 

 

Figure 3: Example of SFTF Station Numbering27 
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2.1 Variable Cycle Engines and Variable Geometry 

This section will briefly describe the history of the VCE. It is this architecture which forms part 

of the motivation for this thesis. Research in this area has been ongoing for many years. VCEs, 

as do many other engines, incorporate variable geometry components. The second part of this 

section will summarize the most common variable geometry components used.  

 

2.1.1 VCE History 

“A ‘variable cycle’ engine generally refers to a family of hybrid gas turbine engines which 

exhibit the high specific thrust characteristic of a low BPR turbofan or turbojet at high power 

settings, and yet also exhibit relatively low specific thrust, noise, and fuel consumption levels 

typically characteristic of moderate BPR turbofan engines at part power settings.”10 To this end, 

there have been numerous engine designs proposed over the years. One of the first attempts was 

the Variable Pumping Compressor shown in Figure 4.  

 

 

 

Figure 4: VAPCOM28 

 

 

The General Electric Company has been especially active in VCE research and in 1973 they 

invented the MOBY (Modulating Bypass Ratio) engine in response to the Air Force’s request for 

engine concepts that address the problems of throttle dependent losses. The system was 

successful in minimizing spillage drag at part power and offered significant fuel savings, but 

overall system complexity prohibited further development.28 
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These few examples are just the tip of the iceberg for variable cycle research; shown here to 

give an idea of some previous concepts and the length of time this line of research has been 

pursued. There is a large variety of sources giving more detail on the advances in variable cycle 

engine technology, several excellent ones being References 15, 19 , and 28. 

 

2.1.2 Variable Geometry  

“Variable geometry is used extensively in advanced aircraft engines.”35 Common forms of 

variable geometry include variable inlet guide vanes (IGVs) and variable area nozzles. A 

variable cycle, while it almost certainly will incorporate variable geometry features, is different 

in that it can operate with two or more thermodynamic cycles – hence the name variable cycle 

engine. There are a large number of proposed VCE designs, however this cycle variability is 

accomplished through use of these variable components often in conjunction with the additional 

3rd stream. This leads to the first observation: 

 

Observation 1: Variable geometry features are also used extensively on current engine 

designs and may be used to provide a small measure of cycle variability or for operability 

requirements. Operating schedules are required to set the individual variable geometries and 

to achieve the maximum performance capability which is potentially available. 

 

In other words, there are additional degrees of freedom available to the cycle that are not 

required to satisfy conservation of mass, momentum, and energy. The added degrees of freedom 

in variable geometry designs makes this inherently an optimization problem. 

 

2.1.2.1 Variable Area Bypass Injector 

A Variable Area Bypass Injector (VABI) is a device used to vary the relative proportions of flow 

in a mixer. Effectively, it acts like a variable area mixer. The key function of the rear VABI is to 

enable control of the fan operating line independently of the core gas generator system.19 It does 

this by matching static pressures of the streams entering the mixer by varying the Mach number 

in the bypass stream to attain the static pressure balance for mixing the flows.30 VABI settings 

may range from 0.5 to 1.5. In any condition other than the nominal position, a pressure drop  
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must occur across the VABI in order to match static pressures resulting in increased mixing 

losses associated with the velocity mismatch of the two streams.19   

 

 

 

Figure 5: VABI Position Diagram 

 

 

2.1.2.2 Variable Area Nozzle 

The basic effect of the nozzle is most easily understood when considering a simple arrangement 

of a compressor on a test rig. At constant speed a nozzle downstream of the compressor is 

closed. This increases the pressure ratio in the compressor because the compressor must now 

increase the density of the gas to push it through the smaller flow area. In such a way the 

working line of a compressor can be controlled.31 For an engine with an afterburner a variable 

area nozzle becomes a necessity. Due to the increase in temperature in the afterburner, the 

pressure increases to the point where compressor stall would occur if the nozzle area where not 

adjusted.31  
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Figure 6: EJ200 Variable Exhaust Nozzle37 

 

 

2.1.2.3 Variable Inlet Guide Vanes 

The aim of using VIGVs in a VCE is to enable transition from one cycle to another.35 They may 

be used in an architecture such as an MFTF to enable a small amount of flow holding.25 Variable 

inlet guide vanes operate by varying the inlet axial velocity. As can be seen in the vector 

diagrams in Figure 7, closing the vanes produces a smaller value of axial velocity and thus a 

smaller mass flow. Similarly, opening the vanes away from the nominal position produces a 

larger axial velocity and thus higher mass flow. This follows from Eq. (1) where c is the axial 

velocity component. 

 

  𝑚̇ = 𝜌𝑐𝐴 (1) . 

 

By varying the axial velocity through changing the IGV angle, one can effectively vary the 

mass flow through the component. In addition to enabling cycle transition, VIGVs offer better 

performance at off design, surge margin control, and increasing the overall compressor range of 

operation. 
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Figure 7: Vector Diagram for VIGV at Constant Rotor Incidence and Deviation Angle 

 

 

2.1.2.4 Variable Nozzle Area Turbine 

Variable area turbines primarily attempt to “change the speed-speed relationship of the high and 

low rotors in order to enable optimal engine efficiency over the entire flight envelope”, thus 

allowing OPR to be controlled as turbine inlet temperature varies to match the fan power 

demand.19 They also allow independent control of high and low rotor speeds and provide 

increased cycle matching capability. This variable geometry occurs at the inlet of the turbine and 

can be attained two ways. The first method involves re-staggering the stator blades and acts in a 

similar fashion to VIGVs. The second method is mechanically simpler and involves introducing 

an obstruction into the flow or by introducing secondary airflow.35 Use of variable geometry in 
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an HP turbine is seen as a large technology risk but use in an LP turbine can lead to modest 

alteration of bypass ratio, TSFC, and specific thrust at subsonic speeds. The specific 

improvement depends largely on the cycle engine design.35 

 

2.2 Current Paradigms in Aero Propulsion Design and Cycle Analysis 

Cycle analysis studies the thermodynamic changes of the working fluid as it flows through the 

engine.26 It can be broken into two types of analysis: parametric cycle analysis (on design 

analysis) and performance analysis (off design analysis). The main goal of on design analysis is 

to relate performance parameters to design choices. Off design analysis determines the 

performance of an engine with fixed design choices at all flight conditions.26 These flight 

conditions are points within the operational envelope defined by some combination of 

environmental conditions, flight Mach number, and throttle setting. The points are selected at 

key segments in a vehicle mission profile, thus the design of an aircraft engine is a compromise 

amongst the various operational requirements of the mission it is expected to fulfill.27 

A single design point (SDP) approach is typically instituted for the sake of simplicity. This 

approach is appropriate for some gas turbine applications and for providing a basic 

understanding of the thermodynamic performance trends for various engine architectures. SDP is 

not aimed at matching an engine to meet a set of performance requirements. Thus many of the 

texts available on cycle analysis do not take into account requirements or technology until after 

the analysis. “In many of the texts, mention is made of the need for a cycle design to meet 

requirements at multiple operating conditions however for simplicity, a single design point 

approach is instituted and a process to meet all of the requirements at different operating 

conditions barely discussed.”27  The selection of a single aerothermodynamic cycle design point 

is a difficult yet important part of cycle analysis.  But, an engine designer must recognize the 

differing requirements for takeoff, climb, cruise, maneuvering, etc.  

The actual calculation of the cycle is an iterative process requiring an initial estimate and 

typically utilizes a steady-state mathematical simulation of an engine to provide internal and 

external flow characteristics as a function of operating conditions and power setting.43
 The basic 

elements of the cycle calculation for a conventional commercial turbofan is illustrated in Figure 

8. The calculation iterates from the initial estimate of those parameters which are undetermined 

and are necessary to complete the calculation in order to solver for the internal flow and energy 
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balance. Error functions are used to represent the degree of unbalance in each iteration. Each 

iteration successively perturbs each parameter and the resulting unbalanced cycled used to 

calculate a matrix of partial derivatives of each error with respect to each variable. This matrix is 

then used to calculate the changes in the variables which will drive the unbalanced cycle towards 

a balanced solution.43 

 

 

 

Figure 8: Turbofan Cycle Calculation43 

 

 

There are a number of studies showing that methods using a single design point are deficient 

in their ability to choose an optimum gas turbine engine cycle for a given set of requirements. 

This is due to the assumptions about the cycle made a priori resulting in an engine that is 

oversized and suffers a performance penalty in order to ensure feasibility at off design operating 

conditions. The deficiencies are only compounded as the complexity of the cycle increases, 

leading to designs that are underperforming at one or more points in the flight envelope. 

As already stated, an SDP methodology has several limitations which reduce its usefulness as 

a tool for designing and matching an engine to meet a set of performance requirements.27 Multi 

design point methodology aims to provide the needed tools. The MDP method is not intended to 

improve the accuracy of performance predictions or work as an optimizer. The intent of MDP 

methodology is to help the designer ensure the feasibility of all the cycle designs for a particular 

application. It does so by adjusting the design to simultaneously meet the performance 

requirements and constraints at different operating conditions. Due to necessary a priori 
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assumptions when implementing SDP, the engine is oversized and thus suffers a performance 

penalty in order to ensure feasibility at off design operating conditions.2,35 Assumptions are made 

about the design variables, how they interact, and how they vary at off-design as a function of 

many possible variables. This leads to the third observation, which should be considered for any 

engine optimization problem: 

 

Observation 2: “Previous studies have shown the deficiencies of Single Design Point methods 

to determine an optimum gas turbine engine cycle for a given set of requirements.” 2 An MDP 

method always meets the performance requirements throughout the operating envelope 

ensuring a properly matched engine and aircraft.  

 

It has also been shown that the benefits of MDP over SDP are further enhanced as the 

complexity of the cycle or number of requirements increase.2,27 However, it should be 

emphasized again that the MDP method is not intended to improve the accuracy of performance 

predictions or work as an optimizer. It is intended to ensure the feasibility of all the cycle designs 

for a particular application. It does so by changing the topography of the cycle design space, in 

comparison to SDP which only can change the feasible boundaries of the cycle design space, 

thus reducing the available designs for a given set of requirements.7  

The selection of the points to include in the cycle analysis is strongly dependent upon the 

vehicle mission. However, some general knowledge about possible design points of interest 

should help identify the point or points necessary to include in analysis. 

The Top of Climb (TOC) point is derived from the requirements and constraints and as the 

name suggests, it is the highest point reached at the end of the climb phase of a mission. It is 

used to specify the highest referred fan speed and flow for a thrust requirement at a given flight 

condition (Mach and altitude). This determines the mass flow schedule. TOC can be further 

subdivided into a subsonic point and a supersonic point, usually at a higher altitude.  

The Sea Level Static (SLS) point may be considered because it is at this point where the 

engine is manufactured and tested, thus it serves as a common point for comparison of various 

engine designs. Also, it is generally the point used for emissions testing. SLS can be further 

subdivided into an installed and uninstalled point. 

The takeoff (TKO) point is also derived from requirements and constraints. It is used to 
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specify the T4,max for a thrust requirement at a given flight condition. It determines the T4 

schedule. TKO should be considered at ISA standard day conditions and the more constraining 

high hot day condition. 

The Cruise point is probably where the engine will operate most of the time and is where the 

engine will be at a part power setting. It should be ensured that the operation at cruise is as 

efficient as feasible. Again, this point could be further subdivided into a subsonic and supersonic 

point. 

The Transonic breakthrough point is where the drag is at its highest. The thrust must be high 

enough here to enable the aircraft to punch through this high drag region into supersonic flight – 

if supersonic flight is required by the mission. 

 Finally, there should be a reference point for the turbomachinery components on each shaft. 

The LP point (LPCDP) is used to incorporate the technology rules for the fan and LPC. It is also 

used to find the cruise operating line for the fan and LPC. The HP point (HPCDP) is used to 

ensure the engine core remains fixed for performance and geometry for all engine designs. 

Additionally, the HP and LP points are actually interconnected making one a function of OPR. 

For example, by setting FPR the HPC corrected speed is adjusted as a function of this FPR to 

meet the required OPR. 

 

2.3 Optimization Techniques for an Engine Model 

The basic elements of any optimization technique generally start with the selection of a starting 

point. From there, a direction must be found from the starting point to a point of improved 

system performance. Then a step size must be determined in the chosen direction. Finally, the 

new point must be evaluated to determine if it is accepted as the optimum. If not, the process 

repeats. This process repeats until either a predefined acceptance criteria is met or a maximum 

number of iterations is reached. 

The simplest approach to minimizing a function is to randomly select a large number of 

variable values and evaluate the result for each. This type of method only requires function 

values in searching for a minimum and is referred to as a zero-order method. These types of 

methods are generally not considered efficient or reliable.39 However they may be better able to 

handle cases with local minima and functions without nice derivatives. One very popular zero-

order method is the genetic algorithm. In concept it is quite simple and is basically a refined 
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random search method. The main attraction of genetic algorithms is their improved probability of 

finding a global optimum and the fact that they operate directly on the function of interest and do 

not require computing a derivative. This is attained at the cost of a relatively large number of 

function evaluations. 

Usually a more efficient approach to an optimization problem is to use gradient information. 

Use of such information limits the search to a specific direction but may require many 

calculations of the gradient if the function is highly non-linear. Methods that use the gradient are 

called first-order methods. First-order methods can generally be expected to perform better than 

zero-order methods but often perform poorly for functions which have discontinuous first 

derivatives. Methods using second derivative information are then called second-order methods. 

However second derivative information is seldom available analytically and even if it is, it is 

computationally costly to compute numerically – reducing or eliminating any efficiency gains.39 

Choice of a suitable search algorithm for engine optimization is important and to date, there 

has already been some research into optimizing an aerothermodynamic cycle. One of the 

simplest methods is a simple brute force grid search. The search can be used to explore an n-

dimensional optimization space where each optimization parameter is varied between its upper 

and lower bounds by some step size. The objective function is then calculated at each grid point 

and compared against other points in the grid. This method was demonstrated successfully for an 

MFTF, and while it is reliable, it is extremely inefficient and becomes increasingly time 

consuming as the number of optimization parameters and design points grows.19  

Simmons utilized a genetic algorithm and a complicated nested structure involving 

ModelCenter for finding an optimal and balanced VCE cycle, shown in Figure 9.1 A genetic 

algorithm is a random search technique and requires several nested loops to search the on and off 

design space as well as modification of the thermodynamics package to repair the internal solver 

when the algorithm chooses bad points.  
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Figure 9: Nested Optimization Loops for Genetic Algorithm1 

 

 

Another approach is that of the nested optimizer/solver approach, which was successfully 

utilized for a core driven fan stage VCE.19 This approach allows the independent variables to be 

used to balance the cycle while the optimization variables are left as fixed inputs. The chosen 

optimizer is wrapped around the solver and varies the optimized parameters to attain optimal 

engine performance. Constraints can be handled either in the inner structure or the outer 

optimization structure. In Reference 19 the Fletcher-Reeves method was coded directly into the 

thermodynamic analysis package. The algorithm is a conjugate-gradient method for optimizing 

an n-dimensional function. The nested optimizer/solver approach is conceptually simple but 

relatively inefficient because it requires the solver to balance the cycle for each iteration of the 

solver requiring many model passes.19
 

The nested solver approach is similar to the previous approach except that it directly uses the 

solver to find the optimal settings. This is done by calculating gradients of the objective function 

and then using the solver to drive the gradients to zero as well as driving the cycle balance error 

terms to zero. To do this, a high level solver is used to optimize the control inputs by driving the 

derivative of the objective function with respect to the control inputs to zero.19 This requires a 

nested solver to re-balance the cycle at each derivative perturbation. Obviously, this method 

requires some means of acquiring the derivative of the objective function. Fortunately, most 
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cycle solvers use a Newton-Raphson or Broyden algorithm which typically require the 

calculation of gradients in the process of matching the cycle. This is similar to the information 

needed by the nested solver approach, which has led to the development of methods designed to 

directly use Newton type solvers and their derivative information to optimize a cycle.19 

In fact, Brown developed two multi-variable cycle optimization techniques specifically for 

optimizing part power performance capabilities of VCEs.43 One is the internal gradient approach 

which uses an optimizer to satisfy both the cycle balance and optimization. This is done by 

representing the cycle balance equality constraints as pairs of inequality constraints. Then the 

errors are constrained to be less than or equal to zero while simultaneously being constrained to 

be greater than or equal to zero.19 The internal cycle balance requirements are combined with the 

external optimization constraints, all of which are expressed as pairs of inequalities to constitute 

the total system independent variables for the internal gradient method.43  

The gradient integration approach involves using a numerical integration technique to push 

toward reaching an objective gradient value of zero. Its implementation is a cross between a 

Runga-Kutta numerical integration routine and a steepest descent optimization routine.19 The 

method makes use of the derivative information produced as a byproduct of the cycle balance 

process to update the search direction after every cycle balance point enabling it to find an 

optimum in the minimum number of model passes.  

Several of Brown’s ideas are extremely appealing leading to the second observation: 

 

Observation 3: The use of derivative information that is already produced as a byproduct of 

the cycle balancing can lead to a fast and efficient method. If the derivative information could 

be used along with the solver, theoretically one could drive the derivatives to zero while 

simultaneously balancing the cycle. 

 

The remaining piece is then to provide the solver with the derivative of the optimization 

response with respect to the optimization variables. This would result in solver based 

optimization, or SBO. A Venn diagram of the commonalities and differences of the cycle 

balance and optimization processes is illustrative in showing why it is advantageous to develop a 

method which combines the two. Aircraft engine cycle design and optimization have several key 

features which the proposed methodology will address, many of which overlap. Both must in 
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some way determine the direction to adjust the available variables to reach a solution and must 

also be able to find an appropriate amount to vary each variable. Both are iterative processes 

which must be given some starting point, or initial guess. Finally, both must be able to handle 

any limits placed on the engine system. Thus the only remaining piece of information needed to 

include optimization in the cycle balance process is computation of the derivative information. 

 

 

 

Figure 10: Cycle Design and Optimization Venn Diagram 

 

 

2.4 Research Questions and Hypotheses 

Variable geometry was once seen as the future of aircraft engines and has since become a major 

player in the engine improvements seen over the past few decades. Variable cycle engines are 

now envisioned as the future of aircraft engines, especially for military fighters. Analysis of the 

benefits these engines afford and accurate performance prediction is necessary if these engine 

architectures are to be fully exploited. However, the design and analysis paradigms that exist in 

aero propulsion system design are admittedly problematic. With more complex engine 

architectures being pursued, the problems are only compounded. Additionally, the added degrees 

of freedom offered by variable geometry above what is required to balance the cycle implies 

optimization is possible. This leads to the problem statement that this thesis addresses.  
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Problem Statement: The determination of the full benefit of variable geometry/variable cycle 

technology is hampered by the added complexity inherent in variable geometry/variable cycle 

designs, and the current design and analysis paradigms in the research community. 

 

 

 

During the research of variable cycle engine architectures, or any engine architecture that 

utilizes variable geometry components, an obvious question comes to mind. How are the 

geometries of the components set? In many advanced aircraft engines today, the use of variable 

geometry is not intended to change the thermodynamic cycle of the engine but simply to improve 

the engine performance.35 Setting VG components is made more complicated for a VCE by the 

fact that the VG components are now also used to enable cycle variability. Thus, the question 

just mentioned must first be answered before any meaningful analysis can be performed on 

variable geometry engine architectures, and leads to the first research question.  

 

Research Question 1: How can optimal settings be found for engines incorporating variable 

geometry in a way that is efficient and robust enough to handle many configurations quickly? 

 

This question focuses on finding optimal and balanced cycle designs for architectures using 

variable geometry. This leads to the first two hypotheses: 

 

Hypothesis 1: Combining a Newton-Raphson type cycle solver and local linear model for 

derivative information should result in a gradient based optimization method that can be used to 

find an optimum of an engine model with user selectable input parameters. 

  

Hypothesis 2: The method developed will be able to optimize an engine cycle while at the 

same time balancing the cycle and maintaining all operating limits. 

 

These hypotheses address the possibility for large efficiency gains by combination of the 

optimization with the cycle solver. With the assumption of differentiability, a local linear model 

may be created which can create derivative information used to drive an objective function to an 

optimum. Specifically, the derivatives produced will be driven to zero – relying on an elementary 
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principle of calculus which says that a minimum or maximum of a function will be found when 

the derivative is exactly zero. The solver can be set up in such a way that the derivative 

information at each pass through the model can be included to drive the derivatives to zero while 

simultaneously balancing the cycle.  

The ability to find an optimum for an engine cycle in this way is extremely powerful. 

However, there still exist some problems. Simmons states “the amount of flow variation from the 

core to the second and third streams is a strong function of the design point selected. Therefore to 

be effective, engine optimization must simultaneously investigate both the on design search 

space and the associated off design search space.”1 Aleid states that there are several design 

points that may size a VCE and asks which one of the points is the most important for designing 

a VCE.35 This leads to the second research question: 

 

Research Question 2: Can an optimization method be developed which generates optimized 

aerothermodynamic cycles and includes all desired cycle performance requirements and 

constraints at multiple design points? 

 

This question focuses on the need to find an optimum for an engine cycle while still being able to 

meet all performance requirements and constraints. Additionally, multiple design points may size 

an engine. 

 

Hypothesis 3: Use of SBO with MDP would combine on design, off design, and optimization 

into a single, general, and simultaneous implementation which will produce a cycle design that 

is optimum while still being feasible at all design points, meeting all performance requirements, 

and not exceeding any constraints. 

  

There is an added appeal when using an approach that only uses the solver along with MDP, 

which itself ties the on and off design phases into a single simultaneous implementation within 

the solver. MDP is an elegant solution to ensuring that an engine meets all requirements at all 

design points. Use of SBO only requires appending the derivative information to the solver and 

corresponding independent/dependent combinations to drive the derivatives to zero. Thus the 

solver does not “see” these added solver variables as anything other than something needed to 
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balance the cycle when in fact they are used to optimize the cycle.  

As already mentioned, the objective function is a complex function of many design variables. 

MDP introduces the possibility to add variables specific to each design point included. 

Combining SBO with MDP also allows the designer pick at which design point to optimize the 

objective. This obviously has a great deal to do with the purposes and requirements of the 

designer, however an optimized MDP (OMDP) method will address many of the problems 

experienced with other optimization techniques and leads to the next hypothesis: 

 

Hypothesis 4: OMDP will always produce feasible designs and the available derivative 

information may be utilized for single or multi-variable optimization on one or more responses 

at one or more design points. 

 

Hypothesis 4 addresses the fact that what is considered as the optimum can vary based on the 

intentions of the designer. In any case, it must be demonstrated that OMDP can produce fully 

feasible designs no matter the choice of optimization point.  

Generally it has been found that the MDP method works best when given an initial starting 

point in the feasible region, i.e. the initial iterate is itself a solution to one of the candidate 

engines within the cycle design space. Because of this, the optimization will also start in the 

feasible region of the design space. This does not however mean that this starting point will 

allow the optimization to find the truly optimal point. A poor choice of starting point may in 

reality cause the optimizer to fail altogether.  

 

Hypothesis 5: The ability of OMDP to converge to the optimal, balanced cycle will be 

insensitive to starting point. 

 

The design space represents an n-dimensional space that may consist of local minima and 

infeasible regions which can cause the optimizer to get stuck or fail altogether. Considering that 

MDP will always start at a solution to one of the candidate engine cycles, and assuming that the 

space is relatively smooth, it is reasonable to also assume that OMDP will be relatively 

insensitive to the choice of starting point for the VG components as long as the cycle itself is 

feasible at the start. 
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CHAPTER 3 

RESEARCH FORMULATION 

 

 

 

The objective of the optimization method here developed, SBO, is to simultaneously balance and 

optimize the aerothermodynamic cycle. The benefits an MDP method provides has also been 

discussed. Therefore SBO should be left general enough to be used for a wide variety of 

applications, including its incorporation into MDP. This represents a simplification and 

improvement of optimization for aircraft engines in the on design and off design search spaces. 

This chapter lays out the mathematical and practical formulation for the optimization technique 

developed. It also provides a brief overview of MDP. It should be noted that his methodology 

focuses on SBO does not go into detail on creation of the cycle design relations. It is assumed 

that the cycle analyst is already familiar with the cycle design process and has all the information 

required to perform the cycle analysis in the absence of optimization. 

 

3.1 Solver Based Optimization Overview 

A broad overview of the methodology for this thesis is found in Figure 11. Typically the data 

generated from on-design cycle analysis such as geometry areas and design pressure ratios are 

inputs for off-design analysis. In off-design, the performance of each component is determined 

from engine component performance maps scaled around a design point. The location on the 

maps are unknown for a given flight condition so an iterative process must take place to 

determine engine cycle performance. This ”matching” is done by means of a thermodynamic 

model that must satisfy continuity and conservation of energy to determine the pressure ratio, 

airflow, rotor speed and efficiency.27 
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Figure 11: Methodology Overview 

 

 

The method chosen for finding the solutions is a form of Newton’s method. MDP allows 

many design points to be included in the analysis to ensure that all performance requirements are 

met at all design points without violating any constraints. This is a more elegant approach than 

separate on and off design analyses. However, as previously stated, MDP methods are not 

intended to improve the accuracy of the performance prediction. The accuracy is dependent on 

the quality of the cycle model and performance maps. Finding improved performance estimates, 

ie optimization, is the role of SBO. Thus combination of SBO with MDP will result in an 

optimal solution that is fully feasible, and meets all requirements and constraints at all design 

points of interest. 

It will be useful to first define the parameters incorporated in the cycle design and 

optimization process. The first category is the cycle design variables. These are varied to create 

the Cycle Design Space (CDS). Cycle design variables define the performance and include, BPR, 

FPR, and OPR. By definition design variables are independent cycle parameters which the cycle 

analyst has complete authority to set.27 The next category of parameters is the operating 

conditions that define the different design points. Each unique combination of operating 

conditions will define a new design point. The next two categories are the cycle independent and 

dependent functions. The independent parameters are those used to reach desired performance 

targets specified by the dependent functions.2 The fifth category of parameters are the 

constraints. These are limits placed on the cycle which the engine may not exceed. Generally, a 

constraint is composed of both technology and performance limits. Each constraint is related to 
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one or more of the dependent parameters. The final category of parameters are the optimization 

variables. These are variables selected by the user to minimize or maximize the objective 

function. They represent additional degrees of freedom in the system above which are required to 

satisfy conservation of mass and energy.  

 

3.1.1 SBO Process 

Incorporation of SBO into the solver is in general no different than setting up the solver for 

balancing the cycle, which is one of the main advantages of the method. The main point of 

difference is the linearization of the nonlinear model to obtain the derivative information. The 

flow of information for SBO, shown in Figure 12, can be broken into 3 parts. The first part 

identifies the objective function to be optimized and the parameters available to optimize the 

function. The next part prepares the engine cycle for analysis and optimization, as well as set up 

of the linearization object. The final part performs the cycle analysis and optimization for the 

chosen combination of design variables.  
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Figure 12: Process Flowchart for Solver Based Optimization Method 

 

 

3.1.1.1 Objective Identification and Definition of Optimum 

The first part of SBO first involves identifying the objective functions to be optimized. The 

objective function represents the system performance parameter to be maximized or minimized. 

Obviously the function identified must be attainable from the cycle evaluation process. Examples 

of typical performance objectives for aircraft engines include SFC and specific thrust, and are 

usually available from any cycle analysis. This process should also include identification of the 

parameters which can be used to optimize this function and any limits which must be placed on 

these parameters. These limits may include physical limits such as a maximum or minimum 

physical area for a VG exhaust nozzle, or limits placed on the cycle such as a maximum fan 

diameter as a function of BPR. Once the objective function is identified, it must be determined 
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whether this function is to be minimized or maximized. Finally, the design point(s) must be 

selected. For SDP, both the objective function and optimization variables must be at the same 

point. For MDP, the objectives and variables may be at any point.  

 

3.1.1.2 Setup 

This step assumes that the cycle design relations and flight conditions have already been 

specified. The cycle design relations are created by selecting cycle variables for use as 

independent parameters to be controlled by the solver to satisfy the target requirements. These 

include design variables needed to balance the cycle, performance requirements, and constraints. 

With this assumption, the linearization object must be set up next. The input and output variables 

are added to the object, which are the previously identified optimization variables and objective 

functions, respectively. Linearization then takes place at the current state of the model, producing 

the needed derivative information. 

 This part of SBO involves adding the optimization variables identified in the previous step to 

the solver. The advantage of this method lies in the fact that the solver itself does not need to be 

modified in any way. To the solver, the additional variables look like any other variable. 

However these variables must use an absolute transformation since they will by definition be 

operating close to zero. Any constraints on the optimization variables are then attached to the 

dependents, thus instructing the solver how to proceed if a constraint is violated. 

Finally, all cycle design relations and optimization relations have been specified. The 

relations appear identical to the solver – the cycle design relations use the independent 

parameters to satisfy target requirements and the optimization relations use independent 

parameters to drive the derivatives to zero. This is done such that each independent parameter is 

linked to achieve a target requirement or zero derivative so that each requirement and derivative 

is guaranteed to be a function of at least one independent parameter. However, the independent 

parameters must be unique and two dependent parameters cannot be linked to the same 

independent parameter. While many dependents may be functions of multiple independent 

parameters, only one unique independent parameter can be used by the solver to control the 

value of a dependent parameter. 
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3.1.1.3 Execution 

This final part of SBO requires two key pieces. The first is the cycle design relations, and the 

second is the derivative information provided by the linearization object. The linearization object 

should be used at each new iteration of the solver to produce derivatives accurate at that point. 

Thus the execution represents a cyclic process where the solver for the nonlinear model and the 

linearization object run in series. If a specified maximum number of iterations has not been 

reached then the final iteration the solver will represent a converged point. This means that all 

cycle design relations have been satisfied and the linearization object at this point produces 

derivative values equal to zero, unless a constraint has been reached. 

 

3.1.2 MDP 

MDP can be broken into three phases. The first establishes the design problem to be addressed. 

The second phase organizes the information from the first phase and prepares the engine cycle 

for analysis. The final phase performs the analysis. 

 

3.1.2.1 Requirements and Technology Definition Phase 

This phase establishes the design problem to be addressed and sets the level of technology to be 

incorporated; i.e., it establishes the performance requirements and technology rules. The cycle 

performance requirements are specific requisites defining the expected performance 

characteristics of the cycle throughout the operational envelope. An example would be the 

requirement of 50,500 lbf (wet) thrust at SLS conditions.  

Technology rules describe how the technology parameters change as a function of the cycle 

design variables. Component performance estimates are functions, tables, or maps which 

estimate component technology parameters for a given technology level as a function of design 

variables. Technology limits are constraints established by the technology level which cannot be 

exceeded.  

 

3.1.2.2 Setup Phase 

The Setup phase organizes the information from the R&TD phase and prepares the candidate 

engine for cycle analysis. Each design point of interest is composed of a unique set of operating 

conditions. Here also occurs the creation of the design rules and selection of design variables 



29 

 

available to create the CDS for the chosen engine architecture. It is the design rules that establish 

how the design points, performance requirements, technology rules, and design variables link 

together. A system of nonlinear equations is created that includes the cycle design relations, 

component matching relations, and constraint relations by use of an auto setup. This adds to the 

solver the variables needed to satisfy continuity and conservation of energy and by user selection 

of cycle variables for use as independent parameters. Some care must be taken when choosing 

these variables, but if chosen correctly the modified Newton-Raphson solver has all the inputs 

required. 

This is the most complex phase of MDP. Extreme care must be taken to correctly create the 

design rules and solver setup. This is different than SDP because a constraint or 

dependent/independent linkage can exist across design points. Not setting this correctly will 

cause erroneous results while making it appear that MDP is working since the model itself will 

work fine.  

Additionally, the MDP method postulates that an initial iterate can be used to find solutions 

to the candidate engine cycles provided that the initial iterate is itself a solution to one of the 

candidate engine cycles.27 For a new MDP model, this initial guess is created using a standard 

SDP approach. Usually the design point chosen is the map scaling point from MDP. Then the 

cycle is designed using the SDP model and recreated at other design point operating conditions 

in off-design analysis as best as possible. From the on and off design points the initial guess for 

the values of the independent parameters may be obtained for MDP. If an MDP model already 

exists, and only requires some modification or addition of design points, the MDP model along 

with the original initial iterate may be used to obtain the new independent parameter values. 27  

 

3.1.2.3 Execution Phase 

Finally, the Execution phase performs the cycle analysis to generate the CDS. This involves 

incorporation of design variables and initial values for each of the independent parameters in the 

solver. The execution of the solver finds a solution that sets the engine cycle; the engine is sized 

to meet all of the design criteria.  

 

3.1.2.4 MDP Initial Iterate 

The selection of an initial iterate is an important part of the method. A poor initial iterate will 
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more often than not fail to converge. If it does the number of iterations required to converge will 

be significant. MDP postulates that a single initial iterate can be used to efficiently and robustly 

find solutions provided that the iterate is itself a solution to one of the candidate engines within 

the cycle design space.27 For a newly built MDP model, this initial iterate can be found by 

utilizing a single point design cycle model coupled with off design analysis. First one of the 

design points is selected for the SDP model. This is usually the map scaling point. Then the cycle 

is designed using the SDP model by specifying the design variables at that point pertaining to the 

point within the MDP cycle design space. The other design point operating conditions are 

recreated in off design analysis as closely as possible to their MDP setup. From the on design 

and off design analysis of the SDP cycle, the values of the independent parameters can be 

obtained and used as the initial iterate for MDP.  

This method may not produce a perfect initial iterate due to the assumptions required for 

SDP. However this method will provide a starting point that is good enough. Once the MDP 

model is running, it can then be used to create better initial iterates if any modifications to the 

original setup are necessary.  

 

3.2 Theoretical Framework 

This chapter provides the background information necessary to understand the technical aspects 

of the optimization problem associated with designing and optimizing an aerothermodynamic 

cycle.  
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Table 1: SBO Theory Nomenclature 

Symbol Description 

 Design variable 

 Design point operating condition 
f Cycle dependent function 
F Vector of dependent functions 
g Constraint parameter 
h Function of one variable 
i Index for dependent functions 
J Jacobian matrix 
L Minimization function 
m Index for decision parameters 

n Index for state parameters 
q Index for optimization equations 
u User defined decision parameter 
x State parameter/ cycle independent parameter 

 Optimization equation 
X Vector of cycle independent parameters 
y Cycle dependent parameter 

Z(X) Vector of constraint functions 

𝑦̂ Calculated dependent value 
 

 

3.2.1 Thrust and Efficiency 

The optimization methodology will be operating on a parameter commonly used to assess engine 

performance. This response parameter is thrust specific fuel consumption. To properly 

understand the use of this parameter, it is here defined. Hill and Peterson (Reference 29) provide 

excellent explanations, summarized below. 
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Figure 13: Generalized Thrust Producing Device29 

 

 

Engine thrust is the vector summation of all forces on internal and external surfaces of the engine 

and nacelle. The thrust of a generalized thrust producer can be found using Newton’s second law 

and a control volume, shown as the dotted line in Figure 13. Assuming steady flow and 

reversible external flow, the sum of the forces acting on the control surface in the x direction 

reduces to  

 

 ∑𝐹𝑥 = (𝑃𝑎 − 𝑃𝑒)𝐴𝑒 + 𝐹 (2) . 

 

The net efflux is  

 ∫ 𝑢𝑥𝜌(𝒖 ⋅ 𝒏)𝑑𝐴 = 𝑚̇𝑒𝑢𝑒 − 𝑚̇𝑎𝑢
𝑐𝑠

 (3)  

 

The momentum equation for the flow carried out by the control volume becomes  

 

 𝐹 = 𝑚̇𝑒𝑢𝑒 − 𝑚̇𝑎𝑢 + (𝑃𝑎 − 𝑃𝑒)𝐴𝑒 (4) . 

 

The term (𝑃𝑎 − 𝑃𝑒)𝐴𝑒 is only not zero if the exhaust jet is supersonic and the nozzle doesn’t 

expand the exhaust jet to ambient pressure. Assuming 𝑚̇𝑒 ≅ 𝑚̇𝑎 = 𝑚̇0, the specific thrust is then 

 

 𝐹/𝑚̇0 = 𝑢𝑒 − 𝑢 (5) . 
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The propulsive efficiency is a measure of the effectiveness with which the propulsion system is 

propelling the aircraft. It is the ratio of thrust power to the engine mechanical power required to 

generate said thrust. This ratio can be expressed as  

 

 
𝜂𝑝 =

𝐹𝑢

𝑚̇0 [(1 + 𝑓) (
𝑢𝑒

2

2 −
𝑢2

2 )]
 (6) . 

 

Now assuming that f is much less than 1.0 in Eq. (6), and that the pressure term in the thrust 

equation is negligible, the propulsive efficiency can be written as  

 

 𝜂𝑝 =
2𝑢

𝑢𝑒 + 𝑢
 (7) . 

 

Looking at the equations for specific thrust Eq. (5) and propulsive efficiency Eq. (7), it is 

easy to see where one problem arises that the VCE is attempting to solve. The thrust equation 

shows that the exhaust velocity must be greater than the free stream velocity and the efficiency is 

maximized when 𝑢𝑒 = 𝑢. However as 𝑢𝑒 approaches 𝑢 the specific thrust is practically zero and 

the engine required to produce a finite amount of thrust would be infinitely large. This obviously 

is not realistic and thus it is not practical to maximize propulsive efficiency.  Therefore, other 

parameters are required to evaluate an engine’s overall performance.  

The simplified thrust equation suggests two obvious ways to attain thrust. The first is to 

attain a high exhaust velocity. This is the approach taken by the turbojet which moves a 

relatively small amount of mass through the engine and exhausts the mass at high velocity – 

providing a high specific thrust for a given thrust value. 
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Figure 14: Typical Turbojet configuration 26 

 

 

The second approach is to move a relatively high amount of mass flow through the engine 

and exhaust it at a lower velocity. This is the approach taken by the turbofan. 

 

 

 

Figure 15: Typical Separate Flow Turbofan configuration26 

 

 

Defining the Thrust Specific Fuel Consumption as 

 

 𝑇𝑆𝐹𝐶 =
𝑚̇𝑓

𝐹/𝑚̇0
=

𝑓

(1 + 𝑓)𝑢𝑒 − 𝑢
 (8) . 

 

it is easy to see why a high BPR turbofan has better fuel consumption characteristics than a 
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turbojet. Size is an issue for a military fighter aircraft for various reasons including weight and 

stealth. This directly implies a strict size limit on the engine and in some cases it isn’t practical to 

use large mass flow to increase the thrust. That leaves option one – using exhaust velocity.  

Substituting Eq. (5) into Eq. (7), and performing some rearrangement yields an equation for 

propulsive efficiency in terms of specific thrust and flight velocity: 

 

 
𝜂𝑝 =

1

1 + (
𝑢
2) (

𝐹
𝑚̇0

)
 (9) . 

 

This shows that propulsive efficiency and specific thrust are inversely proportional so at first 

glance it appears that high specific thrust and high propulsive efficiency cannot be attained 

simultaneously.  

 Specific thrust for an SFTF follows from the same analysis of a generalized thrust producer, 

with the exception that there are now two separate flows. Thus Eq. (4) becomes 

 

 𝐹 = 𝑚̇𝐹(𝑢𝑒,𝐹 − 𝑢) + 𝑚̇𝐶(𝑢𝑒,𝐹 − 𝑢) (10) . 

 

In Eq. (10), 𝑚̇𝐹 is the air flow passing through the fan and 𝑚̇𝐶 is the air flow passing through 

the core. Specific thrust and thrust specific fuel consumption are then 

  

 
𝐹

𝑚̇0
=

𝑎0

1 + 𝐵𝑃𝑅
[𝐵𝑃𝑅 (

𝑢𝑒,𝐹

𝑎0
− 𝑀0) + (

𝑢𝑒,𝐶

𝑎0
− 𝑀0)] (11) . 

 

 𝑇𝑆𝐹𝐶 =
𝑚̇𝑓

𝐹/𝑚̇0
=

𝑓

(1 + 𝐵𝑃𝑅)(𝐹/𝑚̇0)
 (12) . 

 

3.2.2 Cycle Solver: Modified Newton-Raphson Method 

The function of the cycle solver is to drive the model to a self-consistent, or converged state. 

The solver selected as the basis for cycle balance and SBO is a modified form of the Newton-

Raphson method. This is a commonly used technique for solving (finding roots for) systems of 

nonlinear equations and widely employed in many gas turbine modeling software packages.27 
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The common use of the Newton-Raphson method with engine cycle solvers, and its ability to 

produce much of the information required for optimization, makes it an excellent option to 

incorporate an optimization routine. 

Gas turbine engines generally consist of a number of coupled equations which cannot be 

solved for explicitly, requiring an iterative approach in which an initial guess is iteratively 

refined until a satisfactory solution is found.34 These coupled equations consist of a set of 

independent variables the values of which completely determine the state of a set of dependent 

conditions. The solution to this system of equations requires a transformation of the set of 

equations to the standard form  

 

 𝐹(𝑥, ∝, 𝛽, 𝑔) = 0 (13) . 

 

Where F is composed of the transformed cycle dependent parameters and is a function of the 

cycle independent parameters, design variables, design point operating conditions, and constraint 

parameters. Typically the cycle dependent parameters are transformed into dependent functions 

whose solutions are zero using a relative transformation 

 

 𝑓𝑖(𝑥, ∝, 𝛽, 𝑔) =
𝑦̂𝑖(𝑥, ∝, 𝛽, 𝑔) − 𝑦𝑖

𝑦𝑖
 (14) . 

 

Cases where the target value is close to zero require a different type of transformation to prevent 

division by zero. In this case it is necessary to use an absolute transformation for the 

optimization dependents as given in Eq. (15) 

 

 𝑓𝑖(𝑥, ∝, 𝛽, 𝑔) = 𝑦̂𝑖(𝑥, ∝, 𝛽, 𝑔) − 𝑦𝑖 (15) . 

 

where 𝑦̂𝑖 is the calculated value of the dependent parameter and yi is the target value. The 

solution is reached when the error term is reduced to a sufficiently low value 𝜀 where 𝜀 is a 

vector of length (u+m+q) composed of individual tolerance values that the error terms much 

meet or surpass to reach convergence. The vector length represents the number of user defined 

equations (u), plus the number of optimization equations (q), plus the number of engine match 
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equations (m). The user defined parameters are defined by the analyst to meet the performance 

targets at each design point, and also include the optimization parameters selected to optimize 

the cycle. The engine match relations are cycle variables selected to ensure the laws of continuity 

and conservation of energy between the different engine components for each design point. 

Successive calculations of the independent parameters are required to solve the system of 

equations or until the method is stopped at some maximum number of iteration. The independent 

parameters, in vector form, are given by a vector of length (u+m+q) where  

 

 𝑋𝑈 =

[
 
 
 
𝑥1

𝑈

𝑥2
𝑈

⋮
𝑥𝑢

𝑈]
 
 
 
 𝑋𝑀 =

[
 
 
 
𝑥1

𝑀

𝑥2
𝑀

⋮
𝑥𝑚

𝑀]
 
 
 
 𝑋𝑄 =

[
 
 
 
 𝑥1

𝑄

𝑥2
𝑄

⋮

𝑥𝑞
𝑄
]
 
 
 
 

 𝑋 = [
𝑋𝑈

𝑋𝑀

𝑋𝑄

] (16) . 

 

The Newton-Raphson method determines new iterations of the independent parameters by  

 

 𝑋𝑛+1 = 𝑋𝑛 + 𝐹′(𝑋𝑛)−1𝐹(𝑋𝑛) (17) . 

 

At each iteration a local model of the function F is created and the root of the local model is 

found, until the method converges to the solution. Given a multi-dimensional problem the 

Jacobian matrix is used to create the local model instead of F’ 

 

 𝐽(𝑋) =
𝜕(𝐹)𝑖

𝜕(𝑋)𝑗
(𝑋) (18) . 

 

Constraints are treated identically as dependents. Once the constraint is identified it is must 

also be transformed. During each Jacobian matrix calculation the solver also calculates the 

partial derivative of each constraint as a function of the independent parameters and uses the 

results from the calculation of Eq. (19) when a constraint is active. 

 

 𝑍′(𝑋) =
𝜕(𝑍)𝑖

𝜕(𝑋)𝑗
(𝑋) (19) . 
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Thus for an active constraint, the element of Z corresponding to that constraint is placed in J for 

the dependent to which it is linked. 

 

3.2.3 Local Linear Approximation 

Assuming the objective function is differentiable, derivatives can be used to approximate 

nonlinear functions by linear functions.50 In the sense of a local linear model, differentiability 

can be described graphically. If a function is differentiable at a point, then a sufficiently 

magnified portion of the graph of the function centered at that point takes on the appearance of a 

straight line segment.50
 For this reason, such a function is said to be locally linear and this fact 

forms the basis for SBO and its use of a local linear approximation.  

A state space model may be created of the form  

 

  𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (20) . 

 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (21) . 

 

where x is the vector of state variables, y is the vector of system output variables, and u is a 

vector of system input variables. Each contains all variables at all design points of interest.  

A linear model is generated about a point of the non-linear model by determining the 

sensitivity of each derivative and output variable to small changes in the state and input 

variable.34 This is done by perturbing each state and input variable in turn, determining the 

changes in the state derivative and output variables in response to these perturbations, and then 

dividing those changes by the change in the state or input value. The resulting sensitivity terms 

are gathered into four matrices.  

 

𝐴 =
𝜕(𝑠𝑡𝑎𝑡𝑒)𝑖

𝜕(𝑠𝑡𝑎𝑡𝑒)𝑗
, 𝐵 =

𝜕(𝑠𝑡𝑎𝑡𝑒𝑠)

𝜕(𝑖𝑛𝑝𝑢𝑡𝑠)
, 𝐶 =

𝜕(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

𝜕(𝑠𝑡𝑎𝑡𝑒𝑠)
, 𝐷 =

𝜕(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

𝜕(𝑖𝑛𝑝𝑢𝑡𝑠)
 

 

The D matrix contains the information that will be useful for optimization of the engine model. It 

contains the sensitivities of the output variables to the changes in the input variables. For 

example take TSFC as the desired output (objective function) and VG main exhaust nozzle area 
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as the input (optimization parameter). For three design points SLS, TOC, and cruise, the D 

matrix would look like  

 

𝐷 =

[
 
 
 
 
 
 

𝜕(𝑇𝑆𝐹𝐶𝑆𝐿𝑆)

𝜕(𝐴8,𝑆𝐿𝑆)

𝜕(𝑇𝑆𝐹𝐶𝑆𝐿𝑆)

𝜕(𝐴8,𝑇𝑂𝐶)

𝜕(𝑇𝑆𝐹𝐶𝑆𝐿𝑆)

𝜕(𝐴8,𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝑇𝑆𝐹𝐶𝑇𝑂𝐶)

𝜕(𝐴8,𝑆𝐿𝑆)

𝜕(𝑇𝑆𝐹𝐶𝑇𝑂𝐶)

𝜕(𝐴8,𝑇𝑂𝐶)

𝜕(𝑇𝑆𝐹𝐶𝑇𝑂𝐶)

𝜕(𝐴8,𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐴8,𝑆𝐿𝑆)

𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐴8,𝑇𝑂𝐶)

𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐴8,𝐶𝑟𝑢𝑖𝑠𝑒) ]
 
 
 
 
 
 

 

 

 

3.2.4 Mathematical Treatment of Optimization Problem 

The simplest optimization problem involves finding the values of m parameters that minimize a 

function of these parameters.  

 

 𝐿(𝑢𝑖 , … . 𝑢𝑚) = 𝐿(𝑢) (22) . 

 

If there are no constraints on the possible values of u and L(u) has first and second partial 

derivatives everywhere, necessary conditions for a minimum are  

 

 
𝜕𝐿

𝜕𝑢𝑖
= 0, 𝑖 = 1,… ,𝑚 (23) . 

 

 
𝜕2𝐿

𝜕𝑢𝑖
2

≥ 0 (24) . 

 

Where Eq. (24) is an m x m matrix which has components 𝜕2𝐿/𝜕𝑢𝑖𝜕𝑢𝑗  and must be positive 

semidefinite (eigenvalues ≥ 0). Points that satisfy Eq. (23) are called stationary points. Sufficient 

conditions for a local minimum are Eq. (23) and that all eigenvalues must be positive, 

 

 
𝜕2𝐿

𝜕𝑢𝑖
2

> 0 (25) . 
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If Eq. (23) is satisfied, but 
𝜕2𝐿

𝜕𝑢𝑖
2
= 0 then the determinant of the matrix is zero. Such a point is 

called a singular point and more information is required to establish if the point is a minimum. If 

 
𝜕2𝐿

𝜕𝑢𝑖
2 = 0 everywhere, then L is a linear function of u and in general a minimum does not exist.47  

 SBO is a method to tackle a more general class of optimization problems which attempts to 

find values of u that minimize L where L is a scalar function of n + m parameters 

 

𝐿(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑚) = 𝐿(𝑥, 𝑢) 

 

Where n state parameters x are determined by the decision parameters u through a set of n 

constraint relations 

𝑓(𝑥, 𝑢) = [
𝑓1(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑚)

⋮
𝑓𝑛(𝑥1, … , 𝑥𝑛; 𝑢1, … , 𝑢𝑚)

] = 0 

 

Now a stationary point is one where dL= 0 for arbitrary du while holding df=0 , thus 

 

  𝑑𝐿 = 𝐿𝑥𝑑𝑥 + 𝐿𝑢𝑑𝑢 = 0 (26) . 

 

 𝑑𝑓 = 𝑓𝑥𝑑𝑥 + 𝑓𝑢𝑑𝑢 = 0 (27) . 

 

Requiring df=0 and assuming fx is nonsingular, Eq. (27) may be solved for dx and plugged into 

Eq. (26) leading to the necessary condition.47 

 

 
𝑑𝐿

𝑑𝑢
= 𝐿𝑢 − 𝐿𝑥𝑓𝑥

−1𝑓𝑢 = 0 (28) . 

 

3.2.5 Practical Treatment of Optimization Problem 

In plain English, SBO relies on an elementary principle of calculus which states that a minimum 

or maximum of a function will be found when the derivative is exactly zero. It uses the Newton-

Raphson method to find the solution and is essentially a root finder – finding the point where the 

derivative equals zero, to some tolerance.  
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SBO is attempting to find a stationary point, thus meeting the first necessary condition for a 

minimum, Eq. (23). In general, the method does not test for Eq. (24). As stated above, in each 

case either more information is required to find a minimum, or a minimum does not exist. This 

leads to an important assumption of SBO – since SBO does not test for Eq. (24) or Eq. (25) it 

assumes that the response function being optimized is convex within the design boundaries with 

respect to the optimization variables. A good physical example of this is TSFC as a function of 

BPR, where there is unique value of BPR giving a minimum TSFC. A function F(X) bounding a 

set is defined mathematically as convex if for any two points X1 and X2 contained in the set39 

 

 𝐹[𝜃𝑿𝟏 + (1 − 𝜃)𝑿𝟐] ≤ 𝜃𝐹(𝑿𝟏) + (1 − 𝜃)𝐹(𝑿2),   0 ≤ 𝜃 ≤ 1 (29) . 

 

If the function is linear, then by definition the minimum will exist on a boundary. 47 Given a 

convex function, SBO will find the inflection point and thus a minimum or maximum. It is left 

up to the designer to use knowledge of the propulsion system to know whether this inflection 

point is a min or max within the bounds of the problem. 

SBO uses a local linear model to estimate the derivatives of the engine model by means of 

fast matrix multiplications rather than complete convergence of the non-linear thermodynamic 

model. The linear model will exactly agree with the non-linear model at the point where it was 

generated. The region where the linear model produces results sufficiently close depends on the 

non-linearity of the full model and the amount of difference deemed acceptable. 

The u user defined equations come from the cycle analyst independent parameters specified 

by the cycle analyst to meet the performance targets of each of the design points. The m engine 

match equations are cycle variables selected to ensure that the laws of continuity and 

conservation of energy between the different components for each design point are satisfied by 

matching the different components. The q optimization equations come from the partial 

derivatives specified by the cycle analyst and provided by the linear model to optimize the cycle 

by driving the derivative to zero. These (u+m+q) equations form the system of nonlinear 

equations the Newton-Raphson method must solve. The beauty of SBO is that no modification to 

the solver is required to use the method as-is to optimize the cycle. One must only ensure that the 

absolute transform is used for the q optimization equation dependents. More importantly, no 

other software or looping structure is required to both optimize and balance the cycle.  
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 Critical to any engine design problem is properly constraining the design space. Constraints 

are limits placed on the cycle which may not be exceeded and are usually fixed regardless of the 

flight conditions or design variables. The constraints follow from mechanical limits on design 

variables such as maximum exhaust nozzle area. Constraints also include technology limits, 

which are established by the technology level and cannot be exceeded. This would include items 

such as turbine inlet temperature limits. “The constraint relations are linked to one of the cycle 

design relations whose independent parameter will be used to meet the constraint should it be 

violated. In essence, the relations instruct the modified Newton-Raphson solver how to proceed 

when a constraint is violated.”27 

Constraints attached to a dependent are treated as inactive until it is violated. Once violated, 

the partial derivative for the constraint function is placed within the Jacobian matrix and the 

linked dependent function removed. If there is more than one constraint attached to a dependent 

being violated at the same time, the most severe will be used in the Jacobian. Once the constraint 

is inactive, the next most severe constraint function is used in the Jacobian if no priority is 

defined. When all constraints are inactive, the constraint function is removed from the Jacobian 

and the linked dependent function again takes its place.  

 

3.3 Assumptions and Limitations 

With any methodology solving a real world problem there come some assumptions to provide 

some scope to the problem at hand. There has already been mention of some important 

assumptions of SBO and a limitation of using the Newton-Raphson method has been hinted at. A 

major limitation of the solver is that the independent parameters must be unique and two 

dependent parameters cannot be linked to the same independent parameter. This means that only 

a single independent may be used to optimize multiple responses at the same time.  

The first of the assumptions is that the response function chosen is convex on the interval of 

interest, described mathematically in Eq. (29). Thus if the objective and constraint functions are 

convex, only one optimum exists and this is a global optimum.39 The second assumption was not 

plainly stated above, although it should be obvious. This assumption is that the response function 

is differentiable on the interval of interest. This is necessary to obtain the linear model.  

The third assumptions follows directly from the assumption of differentiability. As a 

consequence, it is true that the response function may be closely approximated by a linear 



43 

 

function. Thus it can be assumed that the magnitude of the error in the linear approximation will 

be much smaller than the difference between the starting point and the starting point plus some 

increment, given that this increment in close to zero.50 The assumption can be more clearly 

understood by example of a single variable function h(t). Suppose that h(t) is differentiable at 

h=h0 and let  

 

 ∆ℎ = ℎ(𝑡0 + ∆𝑡) − ℎ(𝑡0) (30) . 

 

denote the change in h that corresponds to the change t in t from t0 to t0+t. Take that  

 

 ∆ℎ ≈ ℎ′(𝑡0)∆𝑡 (31) . 

 

provided that t is close to zero. In this case the error ∆ℎ − ℎ′(𝑡0)∆𝑡 in this approximation will 

have magnitude much smaller than that of ∆𝑡 because50 

 

 lim
∆𝑡→0

∆ℎ − ℎ′(𝑡0)∆𝑡

∆𝑡
= lim

∆𝑡→0
(
ℎ(𝑡0 + ∆𝑡) − ℎ(𝑡0)

∆𝑡
− ℎ′(𝑡0)) = ℎ′(𝑡0) − ℎ′(𝑡0) = 0  (32) . 

 

3.4 OMDP Optimization Strategies 

There are conceivably two basic ways the D matrix can be used to optimize an engine model. 

The final five experiments aim to demonstrate each strategy and how OMDP is used to optimize 

an engine model. The addition of variables or responses to each method would not result in 

changing the methodology, setup, or strategy – it would only increase the number of 

independent/dependent combinations added to the solver and the number of inputs and outputs 

included in the LMG.  

The first strategy type could be considered intra-point optimization. It uses variables at a 

design point to optimize a response at the same design point. The second strategy type could be 

considered cross-point optimization. It uses variables at a design point to optimize a response at a 

different design point. Cross-point optimization is the main advantage of combining SBO with 

MDP. It allows the designer to optimize across any design point while at the same time properly 

sizing the engine and meeting all requirements. Separate on design and off design iterations do 
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not need to take place as both spaces are solved for simultaneously. The addition of variables 

and/or responses to intra-point or cross-point would only be considered extensions of these two 

types. Thus each type may be multi-variable or multi-objective optimization, or both.  

 

3.5 Procedure 

A flowchart providing a general flow of information for SBO was given in Figure 12. A more 

detailed procedure is provided for implementing SBO on any type of engine architecture. Each 

of the experiments in this thesis will follow this procedure. 

 

Step 1 - Select the objective function to optimize: The objective function represents the 

system performance parameter to be maximized or minimized and must be attainable from the 

cycle evaluation process.  

 

Step 2 - Select optimization design point: The chosen objective function may exist at one or 

more design points of interest, and for MDP it must be specified at which design point the 

objective is being optimized, and which design points the optimization variables will respond at. 

For SDP, the objective function and optimization variables must be at the same design point. 

 

Step 3 - Select variables available for optimization: The objective function will most likely 

be a function of many variables, and not all of them may be available to modify by the optimizer. 

This step involves identifying the additional degrees of freedom in the system above what is 

required to satisfy conservation of mass and energy and the variables in the model that 

correspond to these degrees of freedom. Then select one or more of these variables at the 

appropriate design points which will be used to optimize the objective. 

 

Step 4 - Identify limits and constraints: There are many constraints on aircraft engine 

operation and some of these will most likely affect the optimization variables. For example, there 

are physical limits on how much an actuator may move a variable geometry exhaust nozzle. 

Also, there may be cycle limitations such as maximum turbine inlet temperature. If any 

limitations apply to the selected optimization variables or objective function, they must be linked 

to the corresponding dependents. 
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Step 5 - Set up linearization object: The linearization object is the key component of SBO 

and provides the solver with the desired derivative information. This object must be given the 

current state of the model at each solver iteration, including the settings of the optimization 

variables. The object then must output the derivative of the response with respect to the 

optimization variable to the solver. This information is accurate within a small region of the 

point where it was generated and is regenerated at each new iteration of the solver. A realistic 

perturbation size for each optimization variable must be selected. 

 

Step 6 - Construct system of nonlinear equations: Identify the independent and dependent 

parameters from the cycle design, engine matching, optimization, and constraint relations, and 

assemble them into the solver independent and dependent vectors. This includes any constraint 

relations which must be linked to the dependent parameters.  

 

Step 7 – Assign values to cycle design variables and an initial guess: Select values of cycle 

design variables, which represents a unique engine design. Assign values for an initial guess, 

which is required for MDP and SBO. The technique for setting these initial values will be 

discussed in Chapter 4. 

 

Step 8 – Solver setup: Assign all values necessary for executing the solver. This includes 

error tolerance for the solver convergence, limits on the number of iterations, and convergence 

criteria for full generation of the Jacobian matrix. Also, step limits may be set for the solver 

independent parameters, which will in general will be different for the optimization in 

independents due to the absolute transformation used for the optimization dependent vectors. 

 

Step 9 – Execute solver: Execute the solver to determine the solution for the chosen cycle 

design relations, which will also minimize the objective function. This step also includes 

execution of the linearization object at each iteration of the cycle solver to estimate the derivative 

values.  
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CHAPTER 4 

IMPLEMENTATION 

 

 

 

This chapter describes the environment selected for implementation of SBO. Ten research 

experiments have been identified to test the hypotheses put forward. The experiments are 

performed first on models of analytical test functions and then move on to a model of a notional 

high bypass ratio separate flow turbofan. The first five experiments are an incremental buildup of 

SBO to demonstrate how it works and prove the results against known phenomena in analytical 

functions and an SDP SFTF simulation.  

The final five experiments establish a baseline for comparison, demonstrate the method 

working with MDP, and provides notional strategies for using OMDP. This section will describe 

the common pieces to the setup of each experiment. Chapter 5 will describe any implementation 

differences unique to each experiment in more detail. The solver setup for each experiment is 

very basic with the intent of providing a valid setup that can easily demonstrate the intricacies of 

SBO and OMDP and their utility. 

 

4.1 Modeling Environment 

The modeling environment chosen for this thesis is the Numerical Propulsion System Simulation 

v1.65. This tool was created through a joint United States industry and NASA effort to develop a 

state of the art aircraft engine cycle analysis simulation tool (GT2010-22350).18 It is based on 

C++ object oriented framework, which makes it efficient at dealing with different design points 

with many variables and constraints. NPSS includes all the features necessary to create almost 

any engine model with the flexibility to create any required modifications to existing elements. It 

also includes a solver that finds steady state solutions subject to flow continuity, shaft power 

balance, and user defined constraints. Additionally it has been extensively verified against 

proprietary tools, validated against existing engine performance data, and is widely accepted as 

the US industry standard.1 

NPSS contains two key artifacts which make it ideal for SBO. The first is a robust Newton-

Raphson cycle solver. The NPSS solver is extremely robust and an excellent root finder. It is 
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already a tested and trusted functionality used in NPSS for finding a converged state of a model. 

The second artifact is the Linear Model Generator (LMG).  The LMG is another tested and 

trusted NPSS artifact that is useful for estimating the model state derivative values.34 It provides 

a means of estimating derivatives by means of simple and fast matrix multiplications rather than 

complete convergence of the full engine model. 

 

4.2 SBO Setup for NPSS 

This section describes the generic setup for SBO. Use of SBO on any model differs very little 

and this generic setup can for the most part be followed for any model type in NPSS. For SBO to 

work, there must be 2 separate run files. The flow of information between these two run files is 

provided in Figure 16. Information is passed by means of a simple text file. 

 

 

 

Figure 16: Information Flow between Main Run File and LMG Run File 

 

 

The first run file is the main run file, which follows the generic form of any NPSS run file. The 

second run file is the LMG run file which follows a similar form to the generic file setup. The 

difference is that there is no run command in this second file. Instead it executes the LMG. SBO 

is implemented by adding 4 main features to any normal NPSS run file setup. These features 

should be added after the main solver setup, and before the run command. 

1) Add the “call_LMG” function to the main run file directly after the main solver is set up. 
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The actual placement of this function only needs to be anywhere before step 2, but it’s 

best to keep all the additional code grouped together for easier debugging. “call_LMG” 

runs the separate run file and parses the information produced from that file.  

2) Append the function just created to the main solver. This causes NPSS to execute the 

function at the end of normal solver execution.  

3) Add the independent/dependents to the solver that are to be used to optimize the cycle. 

The independent is the variable used to optimize the response. The independent is 

adjusted to drive the dependent left-hand side to equal the dependent right-hand side. In 

this case, the right-hand side is zero, and the left-hand side is the derivative of the 

response with respect to the independent.  

4) Add any constraints to the dependent.  

 

The “call_LMG” function does three main things. It first writes any variables needed by the 

LMG.run file to a text file. This is necessary since the LMG.run file cannot access any 

information defined in, or produced from, the main run file. This text file is written once for each 

iteration of the solver. call_LMG then executes LMG.run. All independent values in the solver 

should be passed, the current value of the optimization independents, as well as the flight 

conditions for each design point. Finally, it parses the information from LMG.run in the form of 

a text file so it can be used by the main run file. Specifically, it reads in the derivative 

information produced by the LMG.  

The LMG.run file is set up in a similar way to any generic NPSS run file. The model is 

included and solver is set up as normal. The text file created by the call_LMG function is 

included. Next, the LMG is set up. This step is relatively simple. The LMG is defined, and given 

the input values and output values. The input is the independent used for optimization and the 

output is the response. The perturbation value used by the LMG can be altered from the default if 

desired and the type of perturbation can be changed between fractional or absolute. The LMG 

can then be executed. The output from this step is the desired derivative. The derivative 

information is then written to a text file. Again, this is the only way the information can be 

communicated back to the main run file.  

To quickly summarize how the information is passed between the two run files, the 

call_LMG function which is appended to the solver writes the solver independent values to a text 
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file, which is included in the LMG.run file. Once that file is finished running, it writes the 

derivative information to a text file, which the call_LMG function parses. The solver uses this 

information to simultaneously drive the derivative to zero while converging the model. The 

LMG must be placed in a separate run file. Inclusion of the LMG step in the main run file will 

result in an infinite loop because of the way the LMG works. 

 

4.3 Selection of Objective Function and Optimization Variables 

The objective function must be one obtainable from the model. For the analytical test functions 

to be described in the next section, this objective is simply the function value. The objective is a 

function of two variables and must be minimized to a known minimum value. There are 

obviously only two possible variables available to be used to minimize the objective. Both will 

be used in the first three experiments described in the next chapter. 

The objective for an engine model again must be one obtainable from the cycle analysis. 

There are several parameters often used for determining the performance of an engine cycle. 

Typically the performance objective at most part power points inside a flight envelope, shown as 

a notional example in Figure 17, is to minimize TSFC while maintaining a desired thrust. Thus 

TSFC is an ideal parameter to be used as the objective function for experiments one through ten.  

 

 

 

Figure 17: Part Power Performance Optimization Objectives throughout Flight Envelope19 

 

 

TSFC is a function of a number of variables including fuel flow, exhaust velocity, ambient 

conditions, airflow, and BPR in a turbofan engine. Several variables are available for use to 
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optimize TSFC in a turbofan. One obvious one is BPR, which will be used since it can be shown 

theoretically that there is a unique BPR giving a minimum TSFC. BPR is not considered a 

variable geometry feature but it is a cycle design variable which the user has the ability to select. 

For an SDP model it can be used to minimize TSFC at the on design point only. However in 

MDP it may be used to minimize TSFC at any design point, which will be shown in the 

following experiments. 

Other variables which can be used are airflow and exhaust velocity. Operationally, these 

variables can both be controlled to some extent by a variable geometry exhaust nozzle. This 

obviously is a VG component and thus is an excellent variable to choose to demonstrate how 

SBO can be utilized to set component geometries. SBO can be given control of the variable 

geometry exhaust nozzle area at any design point to minimize TSFC 

 

4.4 Model Concepts 

This section will describe the models used for the ten experiments identified to investigate the 

research questions put forward in Chapter 2. It will also describe the general solver setup for 

both models, which is identical for the most part. Any differences for a specific experiment will 

be described in Chapter 5. 

 

4.4.1 Analytical Model Description and Solver Setup 

A full engine model need not be created for the proof of concept. Instead, a simple dummy 

element can be created with the analytical test function embedded (see APPENDIX A). NPSS 

will function normally with the automatic solver setup simply being empty since there is no 

conservation of mass or energy to satisfy. Independent/dependent combinations are then added 

by the user to drive the derivatives of the function to zero. Thus there must be one independent 

for each optimization variable and one dependent for each objective function. The dependent 

right hand side is then the derivative value and the left hand side is exactly zero. Any constraints 

can be placed directly on the dependents.  

The derivative information required is provided by the LMG. In order for the derivative 

information to be available, the LMG is placed in a separate run file which is appended to the 

solver. In this way the solver calls this run file as part of its normal operation, which in turn runs 

the LMG. The derivative information is written to a text file and then parsed to read the 
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derivatives into the solver dependents. The LMG must be placed in a separate run file. Inclusion 

of the LMG step in the main run file will result in an infinite loop because of the way the LMG 

works. However, this requires that the solver information from the main run file must be passed 

to the LMG run file explicitly by means of a text file since it cannot access any information 

contained in, or produced by, the main run file. 

The first test function, given by Eq. (33) and shown in Figure 18, is the function used by 

Brown to test the internal gradient and gradient integration methods. Brown successfully showed 

his methods found the optimum more rapidly than two other optimization methods. 

 

 𝑓𝐵(𝑥1, 𝑥2) = 𝑥2
3 − 8𝑥1𝑥2 + (𝑥2 − 2)2 + 4(𝑥1 − 4)2 (33) . 

 

 

       

Figure 18: Brown’s Analytical Test Function 

 

 

The first test problem will use SBO to find the minimum of Brown’s test function. It can be 

stated mathematically as: 

 

Minimize: 𝑓𝐵(𝑥1, 𝑥2) = 𝑥2
3 − 8𝑥1𝑥2 + (𝑥2 − 2)2 + 4(𝑥1 − 4)2 

Subject to: 

0 ≤ 𝑥1 ≤ 12 

0 ≤ 𝑥2 ≤ 8 

 

The second test problem for a proof of concept for SBO involves the Rosenbrock function, 

given by Eq. (34) and shown in Figure 19. This is a common function used to test the ability of 
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an optimization algorithm to find an optimum and demonstrate its efficiency. Use of a common 

function such as this will better illustrate the efficacy of SBO and will make it easy to provide a 

basis for comparison of SBOs utility compared to other optimization algorithms. It has a global 

optimum at 𝑿∗ = {1,1}. 

 

 𝑓𝑅(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2 (34) . 

 

 

             

Figure 19: Rosenbrock Function 

 

 

The second test problem can be stated mathematically as: 

 

Minimize: 𝑓𝑅(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2 

Subject to: 

−2 ≤ 𝑥1 ≤ 2 

−1 ≤ 𝑥2 ≤ 4 

 

The general solver setup for the analytical function experiments is identical. As shown in 

Table 2 there is one independent/dependent combination for each optimization variable. The 

dependent lhs is always the derivative value and the rhs is always exactly zero. Each dependent 

in Table 2 has two constraint dependents attached, shown in Table 3 which constrain the 

independent values by the user-defined minimum and maximum values. 
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Table 2: Solver Setup for Analytical Functions of Two Variables 

Independent Dependent 

Name varName Name lhs rhs 

x1_Indep x1 x1_dep d1 0.0 

x2_Indep x2 x2_dep d2 0.0 

 

 

Table 3: Constraint/Dependent Pairings 

Constraint Min/Max 
Dependent 
Name 

lhs rhs 

con_x1_max Max x1_dep x1 x1max 

con_x1_min Min x1_dep x1 x1min 

con_x2_max Max x2_dep x2 x2max 

con_x2_min Min x2_dep x2 x2min 

 

 

4.4.2 SFTF Engine Model Description and Solver Setup 

The engine cycle model is a mathematical model of the aerothermodynamics of the internal 

engine flow which strictly adheres to the principles of mass and energy conservation. It is this 

model that is used to determine performance data for a given flight condition. A mathematical 

representation of each component is created and thermodynamic properties are measured at 

stations between each component such that each component’s thermodynamic parameters are 

calculated based on upstream conditions.  

The architecture chosen to demonstrate OMDP is a high bypass ratio separate flow turbofan. 

Figure 20 provides a schematic of the NPSS model. The low pressure system is composed of a 

single stage fan and multi-stage LPC driven by a multi-stage LPT on a single shaft. The high 

pressure system consists of a multi-stage HPC and HPT on a single shaft. The NPSS model 

elements include ambient flight conditions, inlet, fan, splitter, LPC, HPC, fuel start, burner, HPT, 

LPT, core and fan nozzle, LP and HP shafts. No cooling flow is accounted for in this model and 

thus is not shown in the schematic, although the model contains the required elements to add 

cooling if so desired in future work. 
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Figure 20: NPSS Model Schematic of SFTF 
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4.4.2.1 Solver Setup for SBO with SDP 

The solver setup is the most critical and complex part of the setup process. It constructs the 

system of nonlinear equations from the cycle design relations, engine matching relations, and 

constraint relations.27 This is done through sets of independent and dependent parameters so that 

the solver can manipulate the independent parameter to achieve the required value of one of the 

dependent parameters. The independents must be unique and there must be an equal number of 

independents and dependents. In this case, TSFC will be the model output variable used as the 

objective function and the optimization variable be bypass ratio. One user added 

independent/dependent combination will need to be included by the user to drive the derivative 

of TSFC found by the LMG to zero by adjusting the bypass ratio. Additionally, the solver will 

now have several engine match relations which are automatically included to satisfy 

conservation of mass and energy. This final proof of concept test case for SBO is important. 

First, it will prove that SBO is capable of being scaled up to a full engine model. More 

importantly, it will demonstrate that it can work with the complex design space represented by a 

turbofan engine.  

Experiment 4 uses a simple SFTF model. SBO varies the BPR to find the minimum TSFC 

for a chosen design FPR value. It is expected that as FPR is increased the optimum BPR will 

decrease. It is also expected that there is a unique BPR for an altitude and Mach, and selected 

FPR and HPC PR which will give the minimum TSFC. The solver setup follows exactly the 

same concept as the analytical test cases. The chosen independent is adjusted to drive the 

derivative to zero. For this case only one independent was used for optimization (“BPR_indep” 

in Table 4). 
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Table 4: SFTF Model Solver Setup 

 Independent Dependent 

Class Name varName Name lhs rhs 

User Ind_W1 Ambient.W Dep_W2R Fan.Fl_I.Wc zw2r 

Engine  
Match 

HPT.S_map.ind_parmMap parmMap Integrate_Nmech trqNet 0 

Engine  
Match 

LPT.S_map.ind_parmMap parmMap Integrate_Nmech trqNet 0 

User 
Opt. 

BPR_Indep Splitter.BPR BPR_dep d1 0 

 

 

4.4.2.2 Solver Setup for OMDP 

The MDP experiments all have a common setup for the most part and will be given here. Any 

deviations from this common setup will be noted for each experiment. The solver setup for MDP 

is typically more complex than for SDP where now the system of nonlinear equations may be a 

coupled system across multiple design points.  

The final 5 experiments will all the same basic setup. Two points will be used for each 

experiment – one at TOC and one at TKO. TOC is at Mach 0.8 and 30,000ft altitude. TKO is at 

Mach 0.3, standard day sea level conditions. Typically TOC is a key sizing condition and sets the 

maximum corrected airflow through the fan and the maximum corrected engine speed. TKO 

generally sets the maximum T4. The solver setup (Table 5) for this experiment includes the auto 

solver variables for conservation of mass and energy. User defined variables to meet the 

requirements will include FAR at TKO, FAR at TOC, and mass flow at TOC. These variables 

will be used to meet the thrust requirements at TKO and TOC as well as hit a maximum T4. The 

setup is such that a maximum fan speed is hit at either TOC or TKO subject to max T4 

constraints at TOC and TKO. The constraint relations are given in Table 6. The result is that a 

max fan speed and T4 will always be hit at the most constraining design point no matter how the 

thrust requirements or flight conditions change. 

A subsonic cruise point will also be included in MDP, which is at Mach 0.8 and 28,000ft 

altitude. At this point the engine is expected to be at a part power setting which should not 

constrain the design space at all. It is being included as the point at which to optimize. The solver 

setup at this point will again include the auto solver setup variables and fuel flow to meet thrust. 

The solver tolerance is set to 1e-9. The default maximum allowable change for an independent 
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variable on any single iteration, the defaultDxLimit, is set to 0.1. 

An initial guess will always be given as the starting point for optimization. This initial guess 

contains values for all solver independent values and may be obtained in two ways. First, the 

model may be run in SDP and the values at the converged points may be taken as the initial 

guess. The second method uses MDP and is often only possible after getting at least one good 

initial guess from SDP. From there, MDP may be run with different input values and still 

converge. This converged point can then provide the initial guess for other points.  

 

 

Table 5: Independent/Dependent Combinations for Experiments 5-10 

Class Independent Dependent 

User TOC_ind_FAR TKO_dep_fntarget 

User TOC_ind_W1 TOC_dep_fntarget 

User TKO_ind_FAR TKO_dep_pcn2max 

User CR_ind_FAR CR_dep_fntarget 

Engine Match Cruise.Ambient.ind_W Cruise.Core_Nozzle.dep_Area 

Engine Match Cruise.Fan.S_map.ind_RlineMap Cruise.Fan.S_map.dep_errWc 

Engine Match Cruise.HPC.S_map.ind_RlineMap Cruise.HPC.S_map.dep_errWc 

Engine Match Cruise.HPT.S_map.ind_parmMap Cruise.HPT.S_map.dep_errWp 

Engine Match Cruise.HP_SHAFT.ind_Nmech Cruise.HP_SHAFT.Integrate_Nmech 

Engine Match Cruise.LPC.S_map.ind_RlineMap Cruise.LPC.S_map.dep_errWc 

Engine Match Cruise.LPT.S_map.ind_parmMap Cruise.LPT.S_map.dep_errWp 

Engine Match Cruise.LP_SHAFT.ind_Nmech Cruise.LP_SHAFT.Integrate_Nmech 

Engine Match Cruise.Splitter.ind_BPR Cruise.Fan_Nozzle.dep_Area 

Engine Match TKO.Ambient.ind_W TKO.Core_Nozzle.dep_Area 

Engine Match TKO.Fan.S_map.ind_RlineMap TKO.Fan.S_map.dep_errWc 

Engine Match TKO.HPC.S_map.ind_RlineMap TKO.HPC.S_map.dep_errWc 

Engine Match TKO.HPT.S_map.ind_parmMap TKO.HPT.S_map.dep_errWp 

Engine Match TKO.HP_SHAFT.ind_Nmech TKO.HP_SHAFT.Integrate_Nmech 

Engine Match TKO.LPC.S_map.ind_RlineMap TKO.LPC.S_map.dep_errWc 

Engine Match TKO.LPT.S_map.ind_parmMap TKO.LPT.S_map.dep_errWp 

Engine Match TKO.LP_SHAFT.ind_Nmech TKO.LP_SHAFT.Integrate_Nmech 

Engine Match TKO.Splitter.ind_BPR TKO.Fan_Nozzle.dep_Area 

Engine Match TOC.HPT.S_map.ind_parmMap TOC.HPT.S_map.dep_errWp 

Engine Match TOC.LPT.S_map.ind_parmMap TOC.LPT.S_map.dep_errWp 
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Table 6: Constraint/Dependent Pairings for Experiments 5-10 

Constraint Min/Max Dependent Name lhs rhs 

TKO_MAX_T4 Max TKO_dep_pcn2max TKO.HPT.Fl_I.Tt 3250 

TOC_MAX_T4 Max TKO_dep_pcn2max TOC.HPT.Fl_I.Tt 3250 
 

 

The DPMM (Table 7) succinctly summarizes the design points, design alternatives, 

performance requirements, component performance estimates, and technology limits. It also 

shows that TOC is designated as the component map scaling point. “At this design point, the 

component performance maps will be scaled to attain the necessary mass flow.”27 
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Table 7: Design Point Mapping Matrix for Experiments 5-10 

Design Points 
TKO 

Mn 0.3 | 0ft 
Cruise 

Mn 0.8 | 28kft 
TOC 

Mn 0.80 | 30 kft 

Comp. Map Scaling Point     x 

Design  

Variables 

FPR     1.68 

LPCPR     1.45 

HPCPR     11.6 

OPR     28 

Fan R line     2 

LPC R line     2 

HPC R line     2 

Fan Nc Map     105% 

LPC Nc Map     100% 

HPC Nc Map     100% 

T4 3250 R     

Performance  

Requirements 

TKO Fn 35000 lbf     

Cruise Fn   10000lbf   

TOC Fn     11000 lbf 

Component  

Performance  

Estimation 

Fan Adiabatic eff.     0.878 

LPC Adiabatic eff.     0.890 

HPC Adiabatic eff.     0.863 

HPT Adiabatic eff.     0.891 

LPT Adiabatic eff.     0.939 

Burner eff.     1.0 

Bypass nozzle Cv     Function of PR 

Bypass nozzle CdTh     Function of PR 

Core Nozzle Cv     Function of PR 

Core Nozzle CdTh     Function of PR 

Technology 

Limits 
T4max     3250 R 
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CHAPTER 5 

RESULTS 

 

 

 

This chapter examines the results from two series of experiments designed to test the hypotheses 

put forth in Chapter 2. The first series of experiments are a proof of concept for solver based 

optimization. The second series of experiments investigates the application of the method and its 

flexibility. These experiments will prove the SBO methodology developed and: 

 

 Demonstrate the setup and implementation of SBO and its use with a Newton-

Raphson cycle solver on a multivariable function. 

 Prove that the optimization method can efficiently find known optimums of both 

analytical test functions and an example aircraft engine model, while investigating 

any limitations. 

 Demonstrate that the method can simultaneously find a balanced and optimum cycle 

design for an aircraft engine. 

 Illustrate the extension of SBO to MDP and demonstrate the functionality and 

advantages this brings to cycle analysis. 

 

5.1 Experiments 1-3, Solver Based Optimization Proof of Concept 

The purpose of this section is to test the ability of the proposed method of Solver Based 

Optimization to find an optimum. SBO is intended to be used with engine models and in the end 

be combined with MDP. As a proof of concept however, it is reasonable to use simple analytical 

test functions to prove the method. Use of an analytical function for which the optimal solution is 

known serves several purposes. First, it will demonstrate the implementation and setup of the 

method in an easy to understand problem. It will also help work out any issues that may crop up. 

Finally, it will prove that the method can find the optimum. 

 

5.1.1 Setup and Implementation 

The first test function is implemented in NPSS by coding Eq. (33) into a dummy element. This 
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element simply calculates the value of Eq. (33). Two independent/dependent combinations are 

added to the solver. The first adjusts the independent 𝑥1 so that the derivative of 𝑓𝐵(𝑥1, 𝑥2) with 

respect to 𝑥1 equals zero to within some tolerance, subject to being bounded by 0 and 12. The 

second adjusts the independent 𝑥2 so that the derivative of 𝑓𝐵(𝑥1, 𝑥2) with respect to 𝑥2 equals 

zero, subject to being bounded by 0 and 8. The optimum found should be relatively close to the 

answer found by Brown, where the optimum can be found analytically to be 𝑿∗ =

{8.60555,4.60555}.  

In the same way as the previous function the second test function is implemented in NPSS by 

coding Eq. (34) into a dummy element. Two independent/dependent combinations are added to 

the solver. The first adjusts the independent 𝑥1 so that the derivative of 𝑓𝑅(𝑥1, 𝑥2) with respect to 

𝑥1 equals zero to within some tolerance, subject to being bounded by -2 and 2. The second 

adjusts the independent 𝑥2 so that the derivative of 𝑓𝑅(𝑥1, 𝑥2) with respect to 𝑥2 equals zero, 

subject to being bounded by -1 and 4. The optimum found should be at 𝑿∗ = {1,1}; and built in 

functionality in NPSS will show how many model passes were required to converge to the 

optimum. 

 

5.1.2    Results 

SBO’s ability to find a known optimum of several analytical functions has been shown. A 

dummy model was set up and each test function embedded so that the function is executed on 

each pass through the model. The solver setup in each case allows the solver to use both x1 and x2 

to drive the derivative to zero. Specifically, the solver adjusts x1 and x2 so that 
𝜕(𝑓)

𝜕(𝑥1)
= 0 and 

𝜕(𝑓)

𝜕(𝑥2)
= 0 respectively. The solver independent and dependent combinations were given in Table 

2. The default solver setup was used except that the toleranceType for the dependents was 

changed to absolute and the dxLimitType for independents was changed to absolute.  

Brown’s test function was successfully minimized by the SBO method with the independent 

and function values for the final iteration shown in Table 8, where a (*) represents the optimum. 

The first thing to notice is that SBO did not approach any of the constraint values. Thus this 

effectively results in an unconstrained optimization problem. Second, SBO found a solution 

much closer to the analytical optimum than the gradient integration method used by Brown. He 

was able to attain an accuracy to within about 2.7%. While this is an excellent result, SBO was 
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able to reduce this to a negligible 0.00012%. SBO postulated that the error would be much 

smaller than the allowable step size. The perturbation for the linear model generator was set for 

𝑥1 at  (𝑥1,𝑚𝑎𝑥 − 𝑥1,𝑚𝑖𝑛) ∗ 0.001 = 0.012 and for 𝑥2 at (𝑥2,𝑚𝑎𝑥 − 𝑥2,𝑚𝑖𝑛) ∗ 0.001 = 0.008. 

Therefore this accuracy is not surprising, and is indeed much less than the step size as put 

forward in the assumptions. 

 

 

Table 8: SBO Results – Unconstrained Analytical Functions 

 Function x1* x2* f* 

Brown (Analytical) 8.605551 4.605551 -225.06644 

Brown (published values) 8.718 4.640 -231.11296 

SBO 8.605548 4.605548 -225.06616 

Rosenbrock (Analytical) 1 1 0 

SBO 0.996871 0.993752 9.79E-06 

 

 

Experiment 2 focused on the Rosenbrock function – a common test function for optimization 

algorithms. Again the experiment resulted in unconstrained optimization. SBO never attempted 

to violate the constraints placed on the dependents so none of them became active. The accuracy 

of the method is approximately 0.000098%. The perturbation size for the LMG was set in a 

similar manner such that set for 𝑥1 it was set at (𝑥1,𝑚𝑎𝑥 − 𝑥1,𝑚𝑖𝑛) ∗ 0.001 = 0.004 and for 𝑥2 it 

was set at (𝑥2,𝑚𝑎𝑥 − 𝑥2,𝑚𝑖𝑛) ∗ 0.001 = 0.005. Again, this accuracy falls well within the 

assumption. This is also less than the accuracy obtained for Brown’s function, which follows 

from using a smaller limit on the perturbation size for the LMG. 

The ability of SBO to find an optimum when there are active constraints is an important 

feature of the method and one which was possible to test once the previous results were obtained. 

As was shown, neither analytical functions reached a constraint boundary. With these results in 

hand it was possible to set limits that SBO would naturally attempt to break in order to test the 

ability of the method to handle constraints. To do this, experiment 1 and 2 also tested SBO 

against both functions with active constraints. For each function, a constraint which would 

definitely become active was placed on one of the dependents which constrained the independent 

value. The results are shown in Table 9.  
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Table 9: SBO Results (Constrained) 

 Function x1* x2* f* Constraint 

Brown 6 3.843319 -108.311 x1 <= 6.0 

Rosenbrock 0.996808 0.993626 1.02E-05 x2 >= 0.2 

 

 

For Brown’s function the constraint on x1 was placed such that the optimum lies in the 

constrained region. This test is to ensure that SBO can reach a suboptimum value without failing 

when the optimum lies in the constrained region of the design space. In that case SBO reaches a 

constraint and can go no further, finally stopping at a sub-optimum. As can be seen in Table 9, 

SBO stopped on the constraint boundary.  This can be seen visually from Figure 22 which shows 

the path SBO takes to reach the final solution. It takes almost exactly the same path in both the 

constrained and unconstrained cases as one would expect, however stops on the boundary in the 

constrained case. 

 

 

 

Figure 21: Brown’s Test Function Optimization Path, Unconstrained 
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Figure 22: Brown’s Test Function Optimization Path, Constrained 

 

 

The constraint for the Rosenbrock function leaves the optimum in the unconstrained space 

but cuts off the path SBO would take to reach the solution if left unconstrained. A gradient based 

method naturally attempts to follow the “valley” in the Rosenbrock function. The constraint in 

this case cuts off the path to make sure SBO can still handle such a constraint.  

The path SBO takes to find the optimum in the unconstrained case is relatively smooth and 

follows the valley in the Rosenbrock function as expected from a gradient based optimization 

algorithm. The constrained case follows a slightly more erratic path but still finds an optimum. 

These paths can be seen in Figure 23.  Since NPSS only activates a constraint once it has been 

violated there are several points that are in the constraint region. Once NPSS reads a value past 

its constraint, it moves the value back towards the unconstrained region and deactivates the 

constraint once it is again unconstrained.34 The same default settings were used for the solver as 

in the unconstrained case at first, but it was found that NPSS would allow the independents to 

move too far, making SBO unstable. It was necessary to adjust the dxLimit manually to find a 

limit suitable to allow convergence. If this becomes a problem in the future, Brown proposes a 

way to dynamically set the limit to ensure convergence which could be used here.43  
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Figure 23: Rosenbrock Function Optimization Path 

 

 

There are a number of methods and optimization algorithms that could be used to optimize 

an engine model. One of the main advantages gained by using SBO comes from the fact that no 

nested loop structure or other software is needed to incorporate the optimization – considerably 

reducing the effort required to build the model and optimize it. However, any of these 

advantages may be lost if SBO cannot efficiently arrive at an optimum. Experiment 3 is a 

comparison of SBO against known optimization algorithms for the Rosenbrock function. It 

proves that SBO is able to attain approximately the same accuracy and efficiency as seven other 

methods. The result of running seven optimization algorithms, shown in Table 10, were obtained 

through an open source software developed by Wolfram. It is a lighter version of Wolfram 

Mathematica which allows Mathematica code to be run on a free player. The code (Reference 

46) runs seven known optimization algorithms to find the optimum of the Rosenbrock function. 

SBO is more efficient in terms of number of function evaluations than 2 methods. The accuracies 

it achieves are comparable to all of the methods. Not surprisingly, the number of evaluations 

SBO takes is closest to Newton’s method. This is expected since the NPSS solver is a modified 

Newton method. 
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Table 10: SBO Comparison for Rosenbrock Function  

  Starting Point 

 

Ending Point 

Solvers for 

Rosenbrock x1 x2 

number of  

evaluations x1 x2 

Levenberg Marquardt -1 1 14 1.004 0.992 

Principal Axis -1 1 15 1.005 0.998 

Interior Point -1 1 20 1.002 0.994 

Newton -1 1 21 1.01 0.988 

SBO -1 1 26 0.997 0.994 

QuasiNewton -1 1 35 1.018 0.985 

Conjugate Gradient -1 1 37 1.006 0.994 

 

 

5.2 Experiment 4, SDP Engine Model Optimization 

Now that SBO is proven to efficiently be able to find an optimum, it can be proven that it works 

for an engine model. Finally, SBO will be used with a simple SFTF engine model that has one 

variable geometry feature. The incorporation of SBO into a working engine model will 

effectively be the same as the analytical test function cases. Given flight conditions T0 and M0, it 

can be analytically demonstrated that there exists an optimum bypass ratio for a chosen HPC 

pressure ratio and FPR for a turbofan engine.26 This optimum bypass ratio gives the minimum 

TSFC for all other parameters fixed. The FPR – BPR – TSFC design space is also convex; 

following the assumption that guarantees SBO will find a minimum. 

For an idealized separate flow turbofan, TSFC is given by 

  

 𝑇𝑆𝐹𝐶 =
𝑚̇𝑓

𝐹/𝑚̇0
=

𝑓

(1 + 𝐵𝑃𝑅)(𝐹/𝑚̇0)
 (35) . 

 

Taking the partial derivative of Eq. (35) with respect to BPR, setting equal to zero, and solving 

for BPR will provide the optimum bypass ratio for a given flight condition, FPR, and HPC 

pressure ratio. A full derivation of this can be found in Reference 26 and the results of this can be 

shown in Figure 24 for and ideal SFTF and one with losses. 
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Figure 24: Real and Ideal Turbofan TSFC vs FPR for HPCPR=24, M0=0.926 

 

 

SBO is a gradient based method and as such the assumption inherent in the method is that the 

design space of an engine is fairly smooth and continuous with the objective function being 

differentiable. Brown43 and Roth19 have both already shown that a gradient based method will 

work for a VCE type design.43 As Figure 24 shows, it can be analytically proven that there exists 

an optimum BPR for a given flight condition and selection of HPCPR and FPR. SBO should be 

able to find this optimum. More importantly SBO will also simultaneously balance the cycle. 

Balancing the cycle while optimizing the cycle removes the need for any type of nested 

optimization structure or outside algorithms which must separately optimize and balance the 

cycle 

 

5.2.1 Setup and Implementation 

The design point chosen for this experiment is TOC at 30,000 feet altitude and Mach 0.8. SBO 

varies the BPR to find the minimum TSFC for a chosen design FPR value. It is expected that as 

FPR is increased the optimum BPR will decrease. It is also expected that there is a unique BPR 

for an altitude and Mach, and selected FPR and HPC PR which will give the minimum TSFC. 
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The solver setup follows exactly the same concept as the analytical test cases. The chosen 

independent is adjusted to drive the derivative to zero. For this case only one independent was 

used for optimization (“BPR_indep” in Table 4). 

 

5.2.2 Results 

The objective here is to verify that SBO finds a balanced cycled design and finds the BPR which 

gives the minimum TSFC, as predicted by analysis of (33). Once the model was built it was 

possible to mimic Figure 24 and produce Figure 25 produced by plotting the TSFC results of 

running the model in a normal (non-SBO) configuration while driving the BPR to a desired value 

in 0.5 increments. This was done for two separate design values of FPR. As expected this 

produces a curve where the optimum BPR (and thus minimum TSFC) for a design FPR is at the 

inflection point of the curve. Not surprisingly, the curves presented in Figure 25 match what is 

seen in the example shown in Figure 24 and in the process validate the model is working 

properly.  

 

 

 

Figure 25: SFTF Optimization Using BPR, HPCPR = 11.6, M0 = 0.8  

 

 

The results of running SBO are overlayed on these curves as single points. The SBO results 

correspond exactly with the inflection points of the two curves demonstrating for the first time 
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that SBO is capable of optimizing and simultaneously balancing a cycle. As further validation of 

the method, the optimum BPR found by SBO decreases for increasing FPR again corresponding 

the expected results exemplified in Figure 24. As a further note on the efficiency of SBO, 

convergence to the reported optimums took 42 model passes for each FPR case and took on the 

order of 30 seconds on a Windows 8 OS using a 2.6 GHz Intel(R) Core (TM) i5-3230M CPU. It 

should be emphasized that the model was converged to a balanced and optimum cycle. 

These results prove that SBO can efficiently converge to an optimal solution for a design 

space represented by a turbofan engine model. It is expected that the complexity of the model 

will not adversely affect the convergence speed. However, incorporating SBO with MDP is 

expected to have a noticeable impact on the convergence speed. This conclusion comes from 

previous experience with MDP and is due to a much larger number of independents included in 

the solver, plus those that are now required for optimization.  

 

5.2.2.1 Selection of Linear Model Perturbation Size 

One of the key assumptions of SBO is that the error in the linear model is proportional to the 

perturbation size. Choosing a perturbation size very small guarantees a low error about the point 

at which the model was generated but does not guarantee that the derivative truly captures the 

slope of the function. Too small or too large of a perturbation can result in poor derivative 

calculations. Thus the question must be asked: How can the perturbation size be chosen to 

accurately represent the derivative of a possibly highly nonlinear function? To start it must be 

chosen such that the error in the approximation is limited to a reasonable value. Then the 

perturbation must also be chosen such that it is representative of the chosen objective function 

and optimization variables. Examination of the results of various perturbation sizes for this SDP 

SFTF model will help in leading to a common method for determining a perturbation size for any 

optimization variable. 

The perturbation size for the SDP model just used for this experiment was varied from 0.003 

to 5.0, keeping track of the number of model passes, the final TSFC value, and final BPR value. 

It is apparent from Figure 26 that there is a “sweet spot” where the number of model passes is 

minimized while still producing almost exactly the same value of TSFC. Too low (below 0.003) 

and the derivative is not good enough to be used at all and optimization fails altogether. Too high 

(above approximately 0.9) and the error in the approximation results in highly inaccurate values 
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of TSFC. The reported derivative is still zero, but obviously there is a large error in this 

calculation at high perturbations.  

It was found that the variation in TSFC in this sweet spot region was at most 0.004%. For 

experiment 4, the default LMG perturbation of 0.005 was used. Now it can be seen that this 

value still produces accurate results, but at the cost of 42 model passes. Better selection of the 

perturbation size would still have produced acceptable accuracy but with 62% fewer model 

passes. 42 model passes is somewhat trivial for a SDP model with so little in the solver, however 

62% can be significant when moving to larger and more complex models. 

 

 

 

Figure 26: Effect of Linear Model Perturbation Size on Objective Function 

 

 

Examination of Figure 27 reveals that there is a similar sweet spot for the optimization 

variable BPR lying in the same region of perturbation sizes. It can be seen that BPR however is 

slightly more sensitive to perturbation size than TSFC, with BPR values varying by up to 1.9%. 

This is still a small variation, but again the same result as experiment 4 could have been obtained 

in far fewer model passes.  
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Figure 27: Effect of Linear Model Perturbation Size on Optimization Variable 

 

 

This leads to a general methodology for selection of a perturbation size. When determining 

the optimization variables to use, limits should also have been established on how far the 

variable can realistically vary within the design space. These limits can be used to set the 

perturbation size in an intelligent manner. Take a small number called 𝑥𝑏𝑜𝑢𝑛𝑑 and use  

 

 𝑥𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛) ∗ 𝑥𝑏𝑜𝑢𝑛𝑑 (36) . 

 

𝑥𝑏𝑜𝑢𝑛𝑑 should be representative of the difference in the maximum and minimum values 

identified. In general, 𝑥𝑏𝑜𝑢𝑛𝑑 should start at 0.01 for differences on the order of 1, and decrease 

by an order of 10 for every order of 10 increase in the difference. So for a difference of 10 to 100 

𝑥𝑏𝑜𝑢𝑛𝑑 should be 0.001. This in fact was the method used for experiments 1 through 3. Used for 

experiment 4, it produces a perturbation value of 𝑥𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = (9 − 4.5) ∗ 0.01 = 0.045. This 

results in a minute difference in TSFC and BPR from the previous 𝑥𝑝𝑒𝑟𝑡𝑢𝑟𝑏 of 0.005, but reduces 

the number of model passes to 16. This method for selecting the perturbation size will be used 

for the remaining experiments. 

 

5.3 Experiments 5-10: Engine Model Optimization with SBO and OMDP 

Hypothesis 4 addresses the fact that what is considered as the optimum can vary based on the 
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intentions of the designer. In any case, it must be demonstrated that OMDP can produce fully 

feasible designs no matter the choice of optimization point. For the following experiments, a 

baseline was created for comparison of OMDP results. This baseline represents an SFTF as 

represented in the DPMM given in Table 7 with the solver setup as described in the previous 

chapter. The baseline values are given below in Table 11. 

 

 

Table 11: Baseline Values for SFTF MDP Model 

 

Variable Base Results 

Responses 

TOC TSFC [1/hr] 0.6548 

TKO TSFC  [1/hr] 0.5141 

Cruise TSFC  [1/hr] 0.6531 

Optimization 

Variables 

TOC BPR 5.0 

Cruise A8 [sq.in.] 574.2 

Cruise A16 [sq.in.] 1941.4 

Limits 

TOC T4 [R] 2925.7 

TKO T4 [R] 3250 

Cruise T4 [R] 2787.6 

Requirements 

TOC Fn [lbf] 11000 

TKO Fn [lbf] 35000 

Cruise Fn [lbf] 10000 

 

 

This comparison will serve to highlight how each design point is affected by the choice of design 

point or points at which to optimize. And, while MDP ensures that the cycle at each design point 

will be feasible and meet all requirements, it does not mean that it will do so in a manner that is 

efficient. Attempting to globally optimize the engine model at every design point or optimization 

at any subset of points may result in a severely suboptimal solution at one design point. If this 

point is cruise for instance, and the aircraft is expected to spend the majority of time in cruise, it 

would not be desirable to have a suboptimal cycle at this point even if overall the cycle is more 

efficient. The selection of optimization point(s) can be thought of as differing optimization 

“strategies”. The comparison of results from using different strategies will demonstrate how 

OMDP performs based on the desirements of the designer. 
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5.3.1 Experiment 5: Intra-point Optimization, Single Variable, Single Objective 

Experiment 5 is intended to demonstrate the ability of MDP with SBO (OMDP) to minimize 

TSFC at a single design point using a single optimization variable. Both TSFC and the chosen 

optimization variable will be at the same design point. This experiment will in essence act as a 

proof of concept for OMDP. It is designed to be as simple as possible to demonstrate the use of 

SBO with MDP. The objective is to minimize TSFC at a single design point using a variable 

available for optimization while still meeting all performance requirements at all design points.  

The variable used for optimization is Cruise Fan Nozzle Area (A16) and the response to 

optimize is Cruise TSFC. The LMG input variable is cruise A16 and the output variable is cruise 

TSFC. The resulting D matrix looks like  

 

𝐷 = [
𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐴16,𝐶𝑟𝑢𝑖𝑠𝑒)
] 

 

Thus, the LMG writes D[0][0] to a text file which is then parsed by the main run file as the 

derivative left hand side. It is expected that TSFC at the cruise condition from running OMDP 

will be less than or equal to the result using MDP and the requirements will be met at all design 

points. It can be shown that fan nozzle area at cruise will be modified by the solver to find 

minimum cruise TSFC. The typical MDP setup must be modified for this case and A16 is taken 

out of the normal set of pre-included variables for cruise. Without this step, the solver will not be 

able to alter the value of A16. 

 

5.3.1.1 Results 

The evaluation of OMDP begins here with experiment 5. It is expected that there is a unique 

value of A16 for which TSFC is minimum. To demonstrate this, the MDP model was run for 

multiple values of A16, keeping all else constant. A16 was driven to specified values at 10sq.in. 

increments producing a curve with an obvious inflection point at which the TSFC is minimum at 

cruise. Additionally, the LMG was run at each point to give the derivative, shown in Figure 28 as 

the right hand axes. The inflection point corresponds to the point at which the derivative is zero, 

as expected. Finally, the MDP model was then run once with SBO included.  
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Figure 28: Cruise TSFC vs A16 and d(TSFC)/d(A16) 

 

 

The final result of OMDP is the red point in Figure 28. It is located where expected at the 

inflection point of the curve. The main advantage of OMDP is its ability to find the optimum 

while simultaneously finding a balanced cycled for each design point included. A16 represents a 

VG features, showing that SBO can be used to schedule variable geometry features for optimum 

performance. Table 12 is a side-by-side comparison of OMDP with the baseline MDP results. 

The baseline A16 was already close to the optimum so the model did not have far to go, since the 

initial guess already gave MDP a converged solution. The cruise TSFC then did not noticeably 

drop, however it still met the criteria of being equal to or less than the baseline result. No 

constraints were violated and all requirements were met. It should also be pointed out that the 

results at design points other than cruise were not affected by optimization. This is as expected 

since the solver is only given control of A16 at cruise. A16 at all other design points should be, 

and is, the same as the baseline. 
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Table 12: Experiment 5 – Baseline vs OMDP Results 

  

Variable 
of 

Interest 

Base 
Results 

Exp. 5 
Perturb 

0.3 

Responses 

TOC TSFC [1/hr] 0.6548 0.6548 0.6548 

TKO TSFC  [1/hr] 0.5141 0.5141 0.5141 

Cruise TSFC  [1/hr] 0.6531 0.6531 0.6531 

Optimization 
Variables 

TOC BPR 5.0 5.0 5.0 

Cruise A8 [sq.in.] 574.192 574.2 574.2 

Cruise A16 [sq.in.] 1941.445 1934.7 1939.4 

Limits 

TOC T4 [R] 2925.655 2925.7 2925.7 

TKO T4 [R] 3250 3250 3250 

Cruise T4 [R] 2787.601 2787.3 2787.5 

Requirements 

TOC Fn [lbf] 11000 11000 11000 

TKO Fn [lbf] 35000 35000 35000 

Cruise Fn [lbf] 10000 10000 10000 

Derivatives 
d1 N/A 6.5E-14 -6.60E-14 

d2 N/A -3.5E-10 -3.5E-10 

 

 

This experiment was run twice. First, the default perturbation size was used for the LMG of 

0.005. Then the method given in the last section for computing the perturbation size was again 

used. The calculated perturbation size for this experiment is (2050 − 1750) ∗ 0.001 = 0.3. 

Figure 29 shows the effect of perturbation size required for convergence on number of model 

passes and fan nozzle exhaust area. Again, the more intelligent selection of perturbation size 

resulted in a decrease in the number of model passes from 55 to 30 – a reduction of 45%. It is 

also apparent that this resulted in a slightly different answer for nozzle area. However, this 

answer is different by only 0.2%, easily small enough to be acceptable for this application. The 

last column in Table 12 gives the results using the calculated perturbation size of 0.3. The A16 

for minimum TSFC was only slightly higher and the majority of other results did not change at 

all.  
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Figure 29: Effect of Perturbation Size on A16 

 

 

5.3.2 Experiment 6 Cross-point Optimization, Single Variable, Single Objective 

Experiment 6 is intended to demonstrate the ability of OMDP to minimize TSFC at a single 

design point using a single optimization variable. TSFC and the chosen optimization variable 

will be at separate points. The variable used for optimization is TOC BPR and the response to 

optimize is cruise TSFC.  BPR is a cycle design variable selected at the on design point and is 

not considered variable geometry. However, it is still a user selectable parameter which SBO can 

be given control of. This experiment will demonstrate the flexibility of SBO to use any user 

selectable parameter, further investigating hypotheses 1, 3, and 4. It will also highlight the ability 

of OMDP to optimize across design points where the optimization variable is at a completely 

different point than the objective function.  

The LMG input variable is TOC BPR and the output variable is cruise TSFC. The resulting 

D matrix looks like  

 

𝐷 = [
𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐵𝑃𝑅𝑇𝑂𝐶)
] 

 

Thus, the LMG writes D[0][0] to a text file which is then parsed by the main run file as the 

derivative left hand side. It is expected that TSFC at the cruise condition from running OMDP 

will be less than or equal to the result using MDP and the requirements will be met at all design 

points. It can be shown that BPR at TOC will be modified by the solver to find minimum cruise 
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TSFC. All requirements will be met. All constraints will not be violated. 

 

5.3.2.1 Results 

To create the BPR vs TSFC curve the MDP model was run for multiple values of BPR, 

keeping all else constant. BPR was driven to specified values at 0.5 increments producing the 

plot in Figure 30. Again, this mimics Figure 24 and shows a unique BPR giving a minimum 

TSFC at the inflection point of the curve. Finally, the MDP model was then run once with SBO 

included. The final result of OMDP is the red point in Figure 30. It is located where expected at 

the inflection point of the curve.  

 

 

 

Figure 30: Cruise TSFC vs TOC BPR 
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TSFC, and the green points are on the secondary right hand axis and are the computed derivative 
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corresponds to the initial pass of the solver through the model. The first sloped region the solver 

is attempting to shift the model towards convergence which includes modifying BPR towards a 

zero derivative and meeting; the error criteria for both the engine match relations and the user 

defined cycle relations. The solver again moves the BPR independent in the second sloped 

region, finally reaching the minimum TSFC and altering the remaining independents to reach 

convergence. It can be seen in the last flat region in Figure 31 that the final balancing of the 

cycle actually moves the derivative away from zero slightly towards a more negative value while 

the TSFC in Figure 32 increases very slightly. However this does not affect the derivative 

enough and the value stays close enough to zero to be within the specified tolerance of 1E-9. 

 

 

 

Figure 31: BPRTOC vs Num. Model Passes 
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Figure 32: Calculated TSFCcruise vs BPRTOC 
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Table 13: Experiment 6 – Baseline vs OMDP Results 

  

Variable 
of 

Interest 

Base 
Results 

Experiment 
6 

Responses 

TOC TSFC [1/hr] 0.6548 0.6008 

TKO TSFC  [1/hr] 0.5141 0.4504 

Cruise TSFC  [1/hr] 0.6531 0.6102 

Optimization 
Variables 

TOC BPR 5.0 7.5 

Cruise A8 [sq.in.] 574.2 905.9 

Cruise A16 [sq.in.] 1941.4 2693.7 

Limits 

TOC T4 [R] 2925.7 2915.7 

TKO T4 [R] 3250 3250 

Cruise T4 [R] 2787.6 2800.2 

Requirements 

TOC Fn [lbf] 11000 11000 

TKO Fn [lbf] 35000 35000 

Cruise Fn [lbf] 10000 10000 

Derivatives d(TSFC)/d(BPR) N/A -2.2E-10 
 

 

5.3.3 Experiment 7: Intra-point Optimization, Multi-variable, Multi-objective 

Experiment 7 is intended to demonstrate how one variable at each design point can be used to 

optimize a single response at an equal number of design points. TOC BPR is used to optimize 

TOC TSFC and cruise A8 is used to optimize cruise TSFC. The typical MDP setup must be 

modified for this case and A8 is taken out of the normal set of pre-included variables for cruise. 

Without this step, the solver will not be able to alter the value of A8. 

The LMG input variables are cruise A8 and TOC BPR the output variables are cruise and 

TOC TSFC. The resulting D matrix has more terms than are being used, with the highlighted 

items being used for optimization. 

 

𝐷 =

[
 
 
 
 
𝝏(𝑻𝑺𝑭𝑪𝑻𝑶𝑪)

𝝏(𝑩𝑷𝑹𝑻𝑶𝑪)

𝜕(𝑇𝑆𝐹𝐶𝑇𝑂𝐶)

𝜕(𝐴8,𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝑇𝑆𝐹𝐶𝐶𝑟𝑢𝑖𝑠𝑒)

𝜕(𝐵𝑃𝑅𝑇𝑂𝐶)

𝝏(𝑻𝑺𝑭𝑪𝑪𝒓𝒖𝒊𝒔𝒆)

𝝏(𝑨𝟖,𝑪𝒓𝒖𝒊𝒔𝒆) ]
 
 
 
 

 

  

Thus, the LMG run file writes D[0][0] and D[1][1] to a text file which is then parsed by the main 
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run file as the left hand side of each derivative. It is expected that TSFC at cruise and TOC 

condition from running OMDP will be less than or equal to the result using MDP. The 

requirements will be met all design points without breaking any constraints.  

 

5.3.3.1 Results 

Multiple variables may be used to simultaneously optimize multiple responses. In this case, 

the variable and response it is attempting to optimize are at the same design point. This 

experiment provides further proof for hypothesis 4. It is clear from Table 14 that both responses 

were reduced from their baseline values by allowing the solver to modify BPR at TOC and A8 at 

cruise. Again as a consequence of a higher on design BPR the TKO TSFC is reduced from its 

baseline value.  

This same consequence would apply to cruise TSFC without the addition of A8 as an 

optimization variable. However, adding A8 allows further optimization at the cruise point. One 

of the key points of OMDP is that it removes the need to find an on design cycle and then in 

series find an optimal off design cycle. In this experiment an optimal and balanced on design 

cycle was found while simultaneously finding an optimal off design cycle. Contrary to any 

previous cycle optimization methods discussed earlier, no additional manual work was required, 

nor was any type of nested structure or outside optimization algorithms. The on design changes 

are automatically captured and used in off design while all requirements were met at all design 

points. This can be seen in the slightly higher BPR value than in experiment 6 which reflects the 

change in main exhaust nozzle area at cruise.  
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Table 14: Experiment 7 – Baseline vs OMDP Results 

  

Variable 
of 

Interest 

Base 
Results 

Experiment 
7 

Responses 

TOC TSFC [1/hr] 0.6548 0.6002 

TKO TSFC  [1/hr] 0.5141 0.4479 

Cruise TSFC  [1/hr] 0.6531 0.6058 

Optimization 
Variables 

TOC BPR 5 7.7 

Cruise A8 [sq.in.] 574.2 831.7 

Cruise A16 [sq.in.] 1941.4 2781.2 

Limits 

TOC T4 [R] 2925.7 2909.9 

TKO T4 [R] 3250 3250 

Cruise T4 [R] 2787.6 2812.8 

Requirements 

TOC Fn [lbf] 11000 11000 

TKO Fn [lbf] 35000 35000 

Cruise Fn [lbf] 10000 10000 

Derivatives 
d(TOC_TSFC)/d(TOC_BPR) N/A -7E-12 

d(Cruies_TSFC)/d(Cruise_A8) N/A 5.7E-12 
 

 

5.3.3.2 Results with Added Constraints 

Constraint handling is an important aspect of the solver for engine balance and optimization. 

This was explored in earlier experiments, however not yet with a multi-variable and multi-

objective optimization case. To further explore this, a constraint was added to BPR. Suppose that 

it was determined that the maximum allowable BPR for this engine is 6.5. A constraint was 

added to the derivative dependent for d(TOC_TSFC)/d(TOC_BPR) constraining BPR to a 

maximum of 6.5 and then experiment 7 was rerun. The results shown in Figure 33 is the result 

after 72 model passes, at which point the simulation was manually halted. Once BPR reaches a 

value of 6.5, the constraint becomes active and the derivative value is no longer in the dependent. 

The value of TSFC at this point is 0.6163 – less than the baseline but still greater than what is 

possible. All independents have reached a value which allows convergence except for the second 

optimization independent value of A8. This is the reason the simulation must be halted manually 

and represents a limitation of SBO as it currently stands.   
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Figure 33: Num. Model Passes vs BPR and d(TSFCTOC)/d(BPRTOC) 

 

 

Figure 34 shows that the derivative of TSFC at cruise with respect to cruise A8 gets very 

close to zero at around 1E-8, but not close enough to be within the specified tolerance of 1E-9. A 

zero derivative cannot be reached in this case due to the constraint on BPR. It is obvious then 

that a current limitation of the method is that it does not incorporate some way for the 

optimization independents to be aware of active constraints on other optimization dependents. 

Since the second derivative dependent value here can never be reached, the simulation continues 

to run until the maximum number of iterations are reached unless stopped prematurely.  
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Figure 34: Num. Model Passes vs A8Cruise 
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Figure 35: Active Optimization Constraint Check Process Flowchart 

 

 

 Following Figure 35, at the end of each solver iteration a check is performed to check for 

active constraints on optimization objective. If none are active, the solver continues unhindered. 

If a constraint is active, then the hysteresis would track the change in the other active 

optimization dependents at each iteration and the number of consecutive iterations with the same 

active constraints. If the change is less than a certain amount for a specified number of solver 

iterations, then a check would be performed on all other solver variables. If the solver is 

otherwise converged, then the simulation should be allowed to exit. All other paths lead to 

continuation of the solver. 
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5.3.4 Experiment 8: Cross-point Optimization, Multi-variable, Single Objective 

Experiment 8 is intended to demonstrate how one variable at each of multiple design points can 

be used to optimize a single response at a single design point. TOC BPR and cruise A16 are used 

to optimize cruise TSFC. The typical MDP setup must be modified for this case and A16 is taken 

out of the normal set of pre-included variables for cruise. Without this step, the solver will not be 

able to alter the value of A16.  

The LMG input variables are cruise A16 and TOC BPR and the output variable is cruise 

TSFC. The resulting D matrix is  

 

𝐷 = [
𝝏(𝑻𝑺𝑭𝑪𝑪𝒓𝒖𝒊𝒔𝒆)

𝝏(𝑩𝑷𝑹𝑻𝑶𝑪)

𝝏(𝑻𝑺𝑭𝑪𝑪𝒓𝒖𝒊𝒔𝒆)

𝝏(𝑨𝟏𝟔,𝑪𝒓𝒖𝒊𝒔𝒆)
] 

  

Thus, the LMG run file will write D[0][0] and D[0][1] to a text file which is then parsed by the 

main run file as the left hand side of each derivative. It is expected that TSFC at cruise from 

running OMDP will be less than or equal to the result using MDP. The requirements will be met 

all design points without breaking any constraints.  

 

5.3.4.1 Results 

Before examining the final results of this experiment, there were several lessons learned from 

this experiment which should be noted. They followed from the first few attempts to run OMDP 

for this experiment which were unsuccessful. To better understand where the problem was, MDP 

was run through many variations of TOC BPR and cruise A16 to get a better idea of what the 

design space looks like. As Figure 36 shows, the minimum TSFC lies somewhere in the 

neighborhood of a 7.5 BPR and 2600 sq. in. fan nozzle area.  
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Figure 36: Contour Plot of Cruise A16 and TOC BPR vs Cruise TSFC 

 

 

After further examination of the iteration details it became apparent that SBO was getting 

stuck in a relatively shallow region of the design space with regards to TSFC. Raising the 

dxLimit on the optimization dependent allowed the solver to move out of this shallow region 

towards the true optimum. Thus, the first lesson is that the dxLimit for the dependent does have 

an effect on whether the model converges. Initially the limit was set at 5 for A16, which does not 

allow A16 to vary enough to get out of sub-minimum shallow regions of the design space.  

However leaving the dxLimit unset also stalls convergence as the default dxLimit used by the 

NPSS solver is too low. With dxLimits of 10 and 100 the model converged and an optimum was 

found. These limits allowed the solver to break out of sub-optimal points without allowing it to 

step too far into a region that it cannot recover from. It was found that in this case there is a wide 

margin for selection of the dxLimit. After repeated attempts it became obvious when the limit 

was too low. In this case the solver would often move an optimization independent the maximum 

allowed for many iterations in a row. Without sufficient improvement in the derivative the solver 

would then backtrack and the independent would move backwards, exactly as shown in Figure 

37 with a dxLimit of 5 on cruise A16. 
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Figure 37: Insufficient dxLimit Oscillatory Behavior 

 

 

For this experiment, increasing the dxLimit had the effect of reducing the number of model 

passes required for convergence as seen in Figure 38. Below a step size of 10, the solver could 

not move the independent enough and experienced the oscillatory behavior seen in Figure 37. 

Setting a limit of 1000 moved the limit well beyond the maximum the solver ever tried to step 

the A16, which was about 200 square inches. Thus in this experiment, there is no upper limit on 

A16 step size but in general a reasonable upper limit should be specified on step size to help with 

highly nonlinear objectives. 
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Figure 38: Effect of Step Size on Number of Model Passes 

 

 

While trying different variations of this experiment, it became apparent that the LMG 

typically will only take about 10 or fewer model passes to converge. Once past that, the LMG 

never will converge. This occurs when the main solver changes the state of the model such that 

the LMG cannot converge. But, within several passes through the model the solver moves the 

state to a place where the LMG can again converge. The second lesson learned is then to set the 

number of passes allowed for the LMG low. It was not uncommon for the LMG to be unable to 

converge for one or two model passes. Leaving the solver to allow too many model passes for 

the LMG significantly increased the overall time to convergence even in cases where the LMG 

only fails a handful of times. It was found that 50 passes for the LMG was sufficient to greatly 

speed up the method, while still being conservative enough to handle tough points. 

With more reasonable limits placed on the dependent A16, OMDP was able to converge to 

an optimum solution at the expected point in the design space as shown by the crosshairs in 

Figure 36. Comparison of the results against the baseline shows that the cruise TSFC was 

reduced. All requirements were met without breaking any constraints. These results are with a 

dxLimit on A16 of 10 sq.in. Increasing the limit to 100 produced nearly identical results but at 

fewer model passes and slightly faster time to overall convergence. This highlights the effect the 

dxLimit may have on not just the ability to converge, but time to convergence. In these 

experiments there are only 3 design points and time to convergence is on the order of minutes. 
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However as the number of solver variables increases, this time increases and it may be 

advantageous to select a limit that allows convergence and decreases convergence time. 

 

 

Table 15: Experiment 8 – Baseline vs OMDP Results 

  

Variable 
of 

Interest 

Base 
Results 

Experiment 
8 

Responses 

TOC TSFC [1/hr] 0.6548 0.6008 

TKO TSFC  [1/hr] 0.5141 0.4503 

Cruise TSFC  [1/hr] 0.6531 0.6102 

Optimization 
Variables 

TOC BPR 5 7.5 

Cruise A8 [sq.in.] 574.2 906.7 

Cruise A16 [sq.in.] 1941.4 2680.6 

Limits 

TOC T4 [R] 2925.7 2915.6 

TKO T4 [R] 3250 3250 

Cruise T4 [R] 2787.6 2799.9 

Requirements 

TOC Fn [lbf] 11000 11000 

TKO Fn [lbf] 35000 35000 

Cruise Fn [lbf] 10000 10000 

Derivatives 
d(Cruies_TSFC)/d(Cruise_A16) N/A 1.04E-13 

d(Cruies_TSFC)/d(TOC_BPR) N/A -5.3E-10 
 

 

5.3.5 Experiment 9: Cross-point Optimization, Single Variable, Multi-objective 

Experiment 9 is intended to demonstrate that a single variable at a single design point can be 

used to optimize a response at multiple design points. It was already shown that TOC BPR has 

an effect on both TOC and cruise TSFC. Thus the solver setup here will be done in such a way as 

to attempt to use TOC BPR to optimize both TOC TSFC and cruise TSFC.  

The LMG input variables is TOC BPR the output variables are cruise and TOC TSFC. The 

resulting D matrix has more terms than are being used, with the highlighted items being used for 

optimization. 
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𝐷 =

[
 
 
 
 

𝝏(𝑻𝑺𝑭𝑪𝑻𝑶𝑪)

𝝏(𝑩𝑷𝑹𝑻𝑶𝑪)
𝝏(𝑻𝑺𝑭𝑪𝑪𝒓𝒖𝒊𝒔𝒆)

𝝏(𝑩𝑷𝑹𝑻𝑶𝑪) ]
 
 
 
 

 

  

Thus, the LMG run file writes D[0][0] and D[1][0] to a text file which is then parsed by the main 

run file as the left hand side of each derivative. 

 

5.3.5.1 Results 

The aim of this experiment was to see if it is possible to use a single variable to optimize 

multiple responses. This, however, is problematic for SBO due to how the solver is implemented. 

The solver only allows one dependent to be active per independent. There is a single derivative 

value per response, thus attempting to add both derivatives as independents results in having one 

too many dependents.  

Several attempts were made to try and combine the two derivatives into one dependent. 

However, combinations of the two derivatives gives no clear way for the solver to alter the 

independent value to drive the derivatives to zero. Another attempt was made to use features of 

the solver itself. In that case, the second derivative dependent was added twice as a constraint on 

the first derivative independent – once as a minimum and once as a maximum. The idea was to 

trick the solver into alternate between using BPRTOC to drive both derivatives to zero. However 

for an unknown reason the constraints never became active. This resulted in one derivative being 

driven to zero but the other left at a value well away from zero.  

Due to the way the NPSS solver works, it does not currently appear that SBO can handle the 

case of single variable, multi-objective optimization. More research should be done though 

before this is completely ruled out. There may still be a way to utilize some built in features of 

the solver to realize this goal. 

 

5.3.6 Experiment 10: Optimization Starting Point Study 

The OMDP method follows from a typical MDP setup where it is given an initial guess derived 

from a converged point in the solution space. This holds true for any starting point of the 

optimization variable for the variable examined – in this case TOC BPR.  

The very first initial iterate for MDP came from running an SDP model with TOC as the map 
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scaling point, exactly as was used for experiment 4. The cruise point is close enough to TOC that 

the off design cruise engine match independent values were identical to TOC and a user defined 

independent was selected to drive thrust to a target value using burner fuel flow. Finally, a TKO 

point was run in off design and the independent values captured. The only user defined relation 

at TKO used FAR to meet a thrust target. Once these values were obtained and input for the 

initial iterate for MDP, the model converged. Then the converged values were used as the initial 

iterate causing the solver to converge in a single pass when re-run with this new initial iterate. 

This initial iterate was used to create all other initial iterates for various starting values of BPR in 

this experiment.  

 

5.3.6.1 Results 

Using the initial guess from experiments 5-9 and starting BPR at each of the values listed in 

Table 16 OMDP failed to converge to an optimum. Good initial iterates were then obtained by 

using the same methodology as described above. The same initial iterate was used as 

experiments 5-9 except a normal MDP setup was used and incrementally worked down or up to 

the desired BPR value. Once the model converged with the new BPR, the independent values 

were captured and used as the initial iterates for each of OMDP sub-experiments here. With a 

good initial iterate for each BPRTOC starting point, the method was able to converge to the same 

BPR and TSFC values for starting point values of BPRTOC from 5 to 9. The path taken can be 

seen in Figure 39. In general, the closer the starting point is to the optimum BPR, the fewer 

model passes required to converge. 
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Figure 39: Effect of Starting Point on Num. Model Passes and End Point 

 

 

As seen in Table 16 are from BPR 0 to 2 the model failed to converge. In this region, the 

normal MDP model will not converge to a solution. Thus OMDP cannot move itself from a 

region well outside of the normal converged region of the design space to an optimum. In this 

example, it is obvious where this region lies and why the model cannot converge. A zero value 

for BPR produces a singularity and too low of BPR values choke the flow and the solver cannot 

move the model state to convergence. The next exceptions are at BPRs of 3 and 4, as can be seen 

in Table 16. These anomalies will be explained momentarily. 
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Table 16: OMDP Starting Point Results 

BPRinit BPR* TSFC* 
Num. Model 

Passes 

0 N/A N/A N/A 

1 N/A N/A N/A 

2 N/A N/A N/A 

3 4.2 0.6784 96 

4 4.1 0.6785 422 

5 7.5 0.6102 71 

6 7.5 0.6102 72 

7 7.5 0.6102 42 

8 7.5 0.6102 63 

9 7.5 0.6102 71 

 

 

It is often not possible to ensure that the absolute optimum design will be found in the 

application of optimization techniques to design problems of practical interest. This may be due 

to a variety of reasons, but from a practical standpoint the best option is often to choose a 

number of initial vectors to start the optimization process. 39 However, in Chapter 3 a restriction 

was placed on the method to ensure that an optimum was found. This restriction, given 

mathematically as Eq. (29), states that the function being optimized must be convex. While this 

restriction may be ignored, it opens up the possibility of SBO finding a sub-optimum. This is 

exactly what happens for BPR values below approximately 4.2. A practical explanation of a 

convex set is that for any two points in the set, a straight line drawn between them will not fall 

outside the set. This is obviously not true in Figure 40 where there exists a very flat region. At a 

starting point of 3 for BPR, OMDP converged to the suboptimum value of 4.2. For starting 

points closer to this flat region such as a BPR of 4, the method was extremely unstable and failed 

it took 422 model passes and still was unable to converge to the true optimum.  
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Figure 40: Non-Convex Design Space 
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CHAPTER 6 

CONCLUSIONS 

 

 

 

This work develops a method for simultaneously balancing and optimizing an engine cycle using 

a Newton-Raphson solver. This method is demonstrated using an SFTF model which is 

implemented in NPSS. Combination of this method with MDP results in a method for designing 

gas turbine engine cycles that simultaneously meet requirements and constraints at multiple 

design points while also optimizing an objective function. The method has been proven against 

analytical functions with known optimum and against engine models. It is also left general 

enough to be used with our without MDP and with almost any conceivable engine architecture 

and allows optimization with any user selectable parameter. 

 

6.1 Research Questions and Hypotheses 

The first research question of this thesis was how can optimal settings be found for engines 

incorporating variable geometry in a way that is efficient and robust enough to handle many 

configurations quickly? The first hypothesis concerning this question stated that the solver and a 

local linear model can be combined to produce an optimization method. Experiments 1-3 were 

able to confirm this hypothesis by successfully finding a known minimum of several analytical 

functions – reaching comparable accuracy and model passes to a number of known optimization 

algorithms. The second hypothesis stated that the method would be able to optimize an engine 

cycle while simultaneously balancing the cycle. This was proven by experiment 4 with an SFTF 

engine model. Theoretically, for an SFTF, there is a unique BPR giving a minimum TSFC. The 

method was successfully able to find this point and balance the cycle with minimum run time.  

The second question asked if the on design and associated off design search space of an 

engine can be optimized while simultaneously balancing the cycle at all design points while 

including all desired cycle performance requirements and constraints. The third hypothesis 

addressed this question and stated that combining SBO with MDP would produce an 

optimization method capable of simultaneously optimizing the cycle while meeting all 

performance requirements and constraints across all included design points. The fourth 
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hypothesis stated that the derivative information produced by the linear model can be used to 

optimize one or multiple responses with one or many variables. Experiments 5-9 were designed 

to investigate the capabilities of the method and the variety of ways that the derivative 

information can be used. These experiments successfully proved hypothesis 3 by optimizing the 

SFTF model and meeting all desired performance requirements and constraints at all design 

points. This included single and multi-variable/objective optimization within and across design 

points, thus proving hypothesis 4. Three design points were included in each experiment at TOC, 

TKO, and cruise.  

Hypothesis 5 stated that since the MDP method includes an initial guess from a previously 

converged point, the method will be insensitive to starting point. Experiment 10 proved this and 

also showed why a restriction on convexity is placed on the objective function to guarantee an 

optimum. These experiments showed that SBO can easily be combined with OMDP to further 

explore the design space and take into account multiple design points at the same time. 

 

6.2 Research Contributions 

A number of contributions are being made to the field of propulsion system design with this 

thesis. The first is the SBO method itself. While originally developed for use with VCEs, it is 

widely applicable to any engine design having additional degrees of freedom which can be used 

to optimize the cycle. SBO directly incorporates the derivative information available from a local 

linear approximation into a Newton-Raphson solver to find an optimum engine cycle for an 

architecture incorporating variable geometry. Combination of these two pieces results in a 

gradient based optimization method which greatly simplifies optimization of an engine as 

compared to previous methods. Additionally, the general nature of SBO allows it to be used with 

almost any architecture.  

 An added bonus of SBO is the ability to use it directly with MDP. This further speeds up 

design, optimization, and analysis by combining on design, off design, and optimization into a 

single, general, and simultaneous implementation. The end product of OMDP is an engine design 

that is optimum while still being feasible at all design points, meets all performance 

requirements, and does not exceed any constraints.  
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6.3 Recommendations for Future Work 

The initial motivation for SBO came from the optimization problem inherent in VCE 

architectures. Thus the natural next step is to use the method on a VCE model. This may start out 

with the optimization of the model set up with a single design point. However multiple design 

points may size a VCE, thus OMDP is ideal for VCE designs and would provide the most benefit 

in this application. The general nature of the method however lends itself to any engine 

architecture and it would be informative to demonstrate the method on other classes of problems. 

Another natural progression of SBO is to include it in the Environmental Design Space 

(EDS), as described in Reference 2 (AIAA 2012-3812). MDP has already been included in the 

EDS and is capable of analyzing a variety of engine architectures and properly matching the 

engine to aircraft. SBO does not require any direct modification to the MDP method itself, thus 

incorporating it into EDS with MDP should be relatively straightforward. 

Finally, the constraint handling features of SBO should be more fully vetted as that is an 

extremely important aspect of engine systems and optimization. All experiments used 

constraints, however only the analytical test functions and part of experiment 7 included 

constraints on the objective function. The constraints were easily handled in the analytical cases, 

but experiment 7 demonstrated that there are currently some limitations on constraint handling 

for SBO in certain cases. More robust constraint handling would be important for constraints 

such as a max fan diameter constraint on BPR. Investigation of constraint handling and updating 

the method to reflect this would be an important and useful avenue for future research. 
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APPENDIX A: NPSS ANALYTICAL MODEL FILES 

 

 

 

The NPSS files listed here were used in experiments 1-3: 

 A1: NPSS Main Run File 

 A2: NPSS LMG Run File 

 A3: NPSS Dummy Model File for Analytical Function 

 A4: NPSS Setup Function File 
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A1: NPSS Main Run File 
 

#include <basic_functions.npss> 

#include <print_macros.fnc> 

#include <Hack.cs> //dummy element 

#include <test_func.mdl> //dummy model 

#include <parseFunctions.npss> 

 

real x1; //function variable 

real x2; //function variable 

real y_current; //holds current value of y at each iteration 

 

////// for Rosenbrock test function 

real x1max=2; 

real x1min=-2; 

real x2max=4; 

real x2min=-1; 

x1 = -1; //current x1 value for each iteration 

x2 = 1; //current x2 value for each iteration 

///////////////////////////// 

 

real d1 = 0; //derivative value for x1_dep 

real d2 = 0; //derivative value for x2_dep 

 

OutFileStream vars_list; 

OutFileStream metrics; 

metrics.open("metrics.csv"); 

  

void call_me() 

  { 

     

 //write out variables needed by LMG to text file 

    vars_list.open("vars.in"); 

 vars_list << "x1 " << " = " << toStr(x1,10) << ";\n" ; 

 vars_list << "x2 " << " = " << toStr(x2,10) << ";\n" ; 

 vars_list << "x1max " << " = " << toStr(x1max,10) << ";\n" ; 

 vars_list << "x1min " << " = " << toStr(x1min,10) << ";\n" ; 

 vars_list << "x2max " << " = " << toStr(x2max,10) << ";\n" ; 

 vars_list << "x2min " << " = " << toStr(x2min,10) << ";\n" ; 

 vars_list << "d1 " << " = " << toStr(d1,10) << ";\n" ; 

 vars_list << "d2 " << " = " << toStr(d2,10) << ";\n" ; 

 vars_list.close(); 

  

 //run the LMG 

 system("run LMG.run");  

  

 y_current = (1-x1)**2 + 100*(x2-x1**2)**2; //store computed function value 

 

 //parse derivative values 

 d1 = toReal(parse("Dmatrix", 3, 1, 0, "LMG_vars.in")); 

 d2 = toReal(parse("Dmatrix", 4, 1, 0, "LMG_vars.in")); 

 close_parse(); 

  

 //output variables of interest at each iteration 
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 //alternative to using viewers 

 metrics << toStr(y_current,10) << ", " ; 

 metrics << toStr(x1,10) << ", " ; 

 metrics << toStr(x2,10) << ", " ; 

 metrics << toStr(d1,10) << ", " ; 

 metrics << toStr(d2,10) << ", " ; 

 metrics << "\n"; 

  

  } 

    //append call_me() to the solver 

 solver.executionSequence.append ("call_me"); 

  

 #include <setup.cs> //solver variable definitions 

  

 //solver setup 

 solver.clear(); 

 solver.maxIterations = 2000; 

 solver.maxJacobians = 20; 

 autoSolverSetup(); 

  

 solver.addIndependent("x1_Indep"); 

 solver.addDependent("x1_dep"); 

  

 solver.addIndependent("x2_Indep"); 

 solver.addDependent("x2_dep"); 

  

 // ********diagnostics stuff************ 

 // solver.solutionMode="ONE_PASS"; 

 // solver.debugLevel = "ITERATION_DETAILS"; 

    // solver.diagnosticFile = "solver_Iteration.Output"; 

 // ********diagnostics stuff************ 

  

 run(); 

 printPride(); 

 metrics.close(); 
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A2: NPSS LMG Run File 
// 

//------------------------------------------------------------------------ 

//                                                                       | 

//   File Name:     LMG.run                                             | 

//   Date(s):       Feb 3 2014                                     | 

//   Author:        Sean T Ford                                          | 

//                                                                       | 

//   Description:   LMG run file for optimization of main model                  | 

//                                                                       | 

//------------------------------------------------------------------------ 

 

#include <Hack.cs> //dummy element 

 

real x1; 

real x2; 

real deltaBound = 0.001; 

real deltax1;  

real deltax2;  

real x1max; 

real x1min; 

real x2max; 

real x2min; 

real d1; 

real d2; 

 

// real x1start; 

// real x2start; 

real D[][]; //2D variable to store LMG D matrix 

 

//give the model the state it was in from the last iteration of the main run file 

#include <vars.in> 

 

//set bounds on how much the LMG can perturb each input variable 

deltax1 = (x1max-x1min)*deltaBound;  

deltax2 = (x2max-x2min)*deltaBound; 

 

//include the model 

#include <test_func.mdl> 

 

//set current state of model (comes from vars.in) 

dummy.x1 = x1; 

dummy.x2 = x2; 

 

//setup LMG. See User Guide for more details on setup 

//linearized model generator ------------------------------------- 

LinearModelGenerator Test_LMG  

{ 

 inputVars = {"dummy.x1", "dummy.x2" } 

 outputVars = {"dummy.y"} 

 setPerturb("dummy.x1", deltax1); 

 setPerturb("dummy.x2", deltax2); 

 setPerturbType("dummy.x1","ABSOLUTE"); 

 setPerturbType("dummy.x2","ABSOLUTE");  

 reportFileName = "junk"; 

} 
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//clear out the solver 

solver.clear(); 

autoSolverSetup(); 

 

//generate derivatives around given point 

Test_LMG.generate(); 

 

//output D matrix for debugging 

cout << "D matrix \n " << Test_LMG.D << endl; 

 

//store D matrix from LMG 

D = Test_LMG.D; 

 

//get derivatives from D matrix that must be written out to be used by main run file 

real D1 = D[0][0]; 

real D2 = D[0][1]; 

 

//output derivative info from LMG to text file to read by main run file 

//**note, must write 1 more values than is used 

//otherwise parse() won't be able to read the variables in the main run file. 

//I don't know why this is, just know this is a problem from experience 

OutFileStream LMG_vars_list; 

 LMG_vars_list.open("LMG_vars.in"); 

 LMG_vars_list << "Dmatrix " << "= " << toStr(D1,10) << " " << toStr(D2,10); 

 LMG_vars_list.close(); 
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A3: NPSS Dummy Model File for Analytical Function 
 

class Hack extends Element {   

//dummy element to compute function value 

   real x1; 

   real x2; 

   real y; 

   void calculate() { //calculate function value 

 

   y = (1-x1)**2 + 100*(x2-x1**2)**2; //Rosenbrock function 

   } 

      

   void postexecute() { 

 cout<<"y = "<<y<<endl; 

   } 

} //end Hack 
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A4: NPSS Setup Function File 

 
//constraint, independent, dependent definitions 

 

Dependent con_x1_max    {eq_lhs = "x1"; eq_rhs = "x1max";}   

Dependent con_x1_min    {eq_lhs = "x1"; eq_rhs = "x1min";}   

Dependent con_x2_max    {eq_lhs = "x2"; eq_rhs = "x2max";}   

Dependent con_x2_min    {eq_lhs = "x2"; eq_rhs = "x2min";}   

 

Independent x1_Indep {  

   varName = "x1";  

   dxLimit = .5; 

   dxLimitType = "ABSOLUTE"; 

   } 

    

Dependent x1_dep{ 

  eq_lhs = "d1"; 

  eq_rhs = "0.0"; 

  constraintNameList = {"con_x1_max","con_x1_min"}; 

  limitTypes = {"MAX","MIN"};   

  toleranceType = "ABSOLUTE"; 

 } 

  

 Independent x2_Indep {  

   varName = "x2";  

   dxLimit = .5; 

   dxLimitType = "ABSOLUTE"; 

   } 

    

    

Dependent x2_dep{ 

  eq_lhs = "d2"; 

  eq_rhs = "0.0"; 

  constraintNameList = {"con_x2_max","con_x2_min"}; 

  limitTypes = {"MAX","MIN"};   

  toleranceType = "ABSOLUTE"; 

 } 
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APPENDIX B: NPSS OMDP MODEL FILES 

 

 

 

The NPSS files listed here were used in experiments 5-10: 

 B1: Main Run File 

 B2: LMG Run File 

 B3: NPSS SFTF Model File 

 B4: Setup Function File 

 B5: Assembly Setup File 

 B6: MDP Scalars File 

 B7: SFTF Function File 
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B1: NPSS Main Run File 

 

//------------------------------------------------------------------------ 

//                                                                       | 

//   File Name:     runDesign.run                                        | 

//   Date(s):       Feb 3 1988                                        | 

//   Author:        Sean T Ford                                          | 

//   Description:   Design point for SFTF                                | 

//                                                                       | 

//------------------------------------------------------------------------ 

 

cout << "\n\nSTART RUN:  TIME = "<< timeOfDay << "\n\n"; 

 

setThermoPackage("GasTbl"); 

#include <basic_functions.npss> 

#include <parseFunctions.npss> 

 

#define TOCdef SET 

#define TKOdef SET 

#define Cruisedef SET 

#define optimize SET //for easy switching between OMDP and MDP 

 

#include <print_macros.fnc> 

#include <SFTF_functions.cs> 

#include <guessIRP_SFTF.fnc> 

 

//----------------------------------------------------------------------------  

//                           Output Data Viewers  

//----------------------------------------------------------------------------  

#include <sftf_page_164.view> 

#include <sftf_164_row.view>  // RKD 12-12-07 

#include <SFTF.view_flops> 

 

#include <shaft1.int> 

#include <Duct1.int> 

#include <Burner1.int> 

#include <CDTH.int> 

#include <CVELOCITY.int> 

#include <COMPRESSOR_REYNOLDS_EFFECTS.int> 

#include <TURBINE_REYNOLDS_EFFECTS.int> 

 

//----------------------------------------------------------------------------  

//       Design Case 

//----------------------------------------------------------------------------  

real d1 = 0; //storage for derivative 

real d2 = 0; 

 

solver.resetConstraints(); 

#include <assembly_setup.cs> //set up assemblies 

#include <solver_setup.cs> //set up all solver variables 

#include <guess.cs> //give model a good starting point 

 

TOC.Splitter.BPR = 9.0; 
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//create output streams for LMG vars and metrics.csv 

OutFileStream vars_list; 

 

#ifdef optimize 

//call me function used to pass LMG the model state and call the LMG 

void call_LMG() 

  { 

 //write model variables needed by LMG 

    vars_list.open("vars.in"); 

  //design point conditions 

  vars_list << "  TOC.Ambient.alt       

 "  <<  " = " <<  toStr(TOC.Ambient.alt,10) << ";\n" ; 

  vars_list << "  TOC.Ambient.MN       

 "  <<  " = " <<  toStr(TOC.Ambient.MN,10) << ";\n" ; 

  vars_list << "  TKO.Ambient.alt       

 "  <<  " = " <<  toStr(TKO.Ambient.alt,10) << ";\n" ; 

  vars_list << "  TKO.Ambient.MN       

 "  <<  " = " <<  toStr(TKO.Ambient.MN,10) << ";\n" ; 

  vars_list << "  Cruise.Ambient.alt       " 

 <<  " = " <<  toStr(Cruise.Ambient.alt,10) << ";\n" ; 

  vars_list << "  Cruise.Ambient.MN       

 "  <<  " = " <<  toStr(Cruise.Ambient.MN,10) << ";\n" ; 

  //solver independents 

  vars_list << "  TOC.HPT.S_map.parmMap     

 " << " = " << toStr(TOC.HPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  TOC.Ambient.W       

 " << " = " << toStr(TOC.Ambient.W,10) << ";\n" ; 

  vars_list << "  TOC.LPT.S_map.parmMap     

 " << " = " << toStr(TOC.LPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  TOC.Burner.FAR       

 " << " = " << toStr(TOC.Burner.FAR,10) << ";\n" ; 

  vars_list << "  TKO.Ambient.W       

 " << " = " << toStr(TKO.Ambient.W,10) << ";\n" ; 

  vars_list << "  TKO.Fan.S_map.RlineMap     

 " << " = " << toStr(TKO.Fan.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  TKO.HPC.S_map.RlineMap     

 " << " = " << toStr(TKO.HPC.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  TKO.HPT.S_map.parmMap     

 " << " = " << toStr(TKO.HPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  TKO.HP_SHAFT.Nmech      

 " << " = " << toStr(TKO.HP_SHAFT.Nmech,10) << ";\n" ; 

  vars_list << "  TKO.LPC.S_map.RlineMap     

 " << " = " << toStr(TKO.LPC.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  TKO.LPT.S_map.parmMap     

 " << " = " << toStr(TKO.LPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  TKO.LP_SHAFT.Nmech      

 " << " = " << toStr(TKO.LP_SHAFT.Nmech,10) << ";\n" ; 

  vars_list << "  TKO.Splitter.BPR      

 " << " = " << toStr(TKO.Splitter.BPR,10) << ";\n" ; 

  vars_list << "  TKO.Burner.FAR       

 " << " = " << toStr(TKO.Burner.FAR,10) << ";\n" ; 

  vars_list << "  Cruise.Ambient.W       

 " << " = " << toStr(Cruise.Ambient.W,10) << ";\n" ; 

  vars_list << "  Cruise.Fan.S_map.RlineMap     

 " << " = " << toStr(Cruise.Fan.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  Cruise.HPC.S_map.RlineMap     
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 " << " = " << toStr(Cruise.HPC.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  Cruise.HPT.S_map.parmMap     

 " << " = " << toStr(Cruise.HPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  Cruise.HP_SHAFT.Nmech      

 " << " = " << toStr(Cruise.HP_SHAFT.Nmech,10) << ";\n" ; 

  vars_list << "  Cruise.LPC.S_map.RlineMap     

 " << " = " << toStr(Cruise.LPC.S_map.RlineMap,10) << ";\n" ; 

  vars_list << "  Cruise.LPT.S_map.parmMap     

 " << " = " << toStr(Cruise.LPT.S_map.parmMap,10) << ";\n" ; 

  vars_list << "  Cruise.LP_SHAFT.Nmech      

 " << " = " << toStr(Cruise.LP_SHAFT.Nmech,10) << ";\n" ; 

  vars_list << "  Cruise.Splitter.BPR      

 " << " = " << toStr(Cruise.Splitter.BPR,10) << ";\n" ; 

  vars_list << "  Cruise.Burner.Wfuel      

 " << " = " << toStr(Cruise.Burner.Wfuel,10) << ";\n" ; 

   

  //optimization variables 

  vars_list << "  TOC.Splitter.BPR      "

 << " = " << toStr(TOC.Splitter.BPR ,10) << ";\n" ; 

 vars_list.close(); 

  

 //run the LMG 

 system("run LMG.run"); 

  

 //update the rowviewer 

 rowSheet.update(); 

  

 //parse the derivative value(s) 

 d1 = toReal(parse("Dmatrix", 3, 1, 0, "LMG_vars.in")); 

 close_parse(); 

 cout << "\n\n *****d1 = " << d1 << " ******* \n\n"; 

  } 

   

  //append call_me() to the solver 

 solver.executionSequence.append ("call_LMG");  

  

 //optimization independent/dependent definition 

 Independent opt_Indep { varName = "TOC.Splitter.BPR"; dxLimit = 5; dxLimitType = "ABSOLUTE"; } 

    Dependent opt_Dep{eq_lhs = "d1"; eq_rhs = "0.0"; toleranceType = "ABSOLUTE";} 

  

 //add optimization variables to the solver 

 solver.addIndependent("opt_Indep"); 

 solver.addDependent("opt_Dep");  

 

#endif 

//**************diagnostics stufff************************** 

// cout << "\n\n DEPENDENTS \n" << solver.dependentNames << endl; 

// cout << "\n\n INDEPENDENTS \n" << solver.independentNames << endl; 

// cout << "\n\n Constraints \n" << solver.constraintNames << endl; 

// setOption("solutionMode", "ONE_PASS"); 

solver.debugLevel = "ITERATION_DETAILS"; 

solver.diagnosticFile = "solver_Iteration.cs"; 

// solver.debugLevel = "MATRIX_DETAILS"; 

// solver.diagnosticFile = "solver_matrix.cs"; 

//********************************************************** 
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  run();  

  rowSheet.update(); 

 

pv.display(); 

printPride(); 

write_indeps(); 

// write_scalars(); 

#ifdef TOCdef 

 TOC.pointTOC.display(); 

#endif 

#ifdef TKOdef 

 TKO.pointTKO.display(); 

#endif 

#ifdef Cruisedef 

 Cruise.pointCR.display(); 

#endif 

 

 

 

cout << "COMPLETED RUN:  TIME = "<< timeOfDay << endl; 
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B2: LMG Run File 

 

//------------------------------------------------------------------------ 

//                                                                       | 

//   File Name:     LMG.run                                             | 

//   Date(s):       Feb 3 2014                                     | 

//   Author:        Sean T Ford                                          | 

//   Description:   LMG run file for optimization of main model                  | 

//                                                                       | 

//------------------------------------------------------------------------ 

 

//include thermo package 

setThermoPackage("GasTbl"); 

 

//include macros. don't currently use any but may be useful for debugging later 

#include <print_macros.fnc> 

 

//include function file and SFTF model 

#define TOCdef SET 

#define TKOdef SET 

#define Cruisedef SET 

#include <SFTF_functions.cs> 

 

#include <shaft1.int> 

#include <Duct1.int> 

#include <Burner1.int> 

#include <CDTH.int> 

#include <CVELOCITY.int> 

#include <COMPRESSOR_REYNOLDS_EFFECTS.int> 

#include <TURBINE_REYNOLDS_EFFECTS.int> 

 

#include <assembly_setup.cs> //set up assemblies 

#include <solver_setup.cs> //set up all solver variables 

 

real deltax1 = 10; //max amount LMG can perturb model by 

 

solver.maxIterations = 50; 

 

real D[][]; //2D variable to store LMG derivative matrix 

 

//give the model the state it was in from the last iteration of the main run file 

#include <vars.in>   

 

 

//setup LMG. See User Guide for more details on setup 

LinearModelGenerator Test_LMG  

{ 

 inputVars = {"TOC.Splitter.BPR"} 

  outputVars = {"Cruise.Eng.TSFC"} 

 reportFileName = "junk"; 

} 

 

//execute the LMG 

Test_LMG.execute(); 
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//this output mostly for debugging to get a visual that everything is working in LMG.run 

cout << "D matrix \n " << Test_LMG.D << endl; 

 

//save off D matrix 

D = Test_LMG.D;  

 

//get derivatives from D matrix that must be written out to be used by main run file 

real D1 = D[0][0]; 

real D2 = 0; 

 

 

//this output mostly for debugging to get a visual that everything is working in LMG.run 

cout << "D1 \n " << D1 << endl; 

 

//output derivative info from LMG to text file to read by main run file 

//**note, must write at least 2 values even if the second one is not used for anything 

//otherwise parse() won't be able to read the variables in the main run file. 

//I don't know why this is, just know this is a problem from experience 

OutFileStream LMG_vars_list; 

 LMG_vars_list.open("LMG_vars.in"); 

 LMG_vars_list << "Dmatrix" << " = " << toStr(D1,10) << " " << toStr(D2,10); 

 LMG_vars_list.close(); 
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B3: NPSS SFTF Model File 

 

//------------------------------------------------------------------------ 

//                                                                       | 

//   File Name:     SFTF.mdl                                             | 

//   Date(s):       January 21, 2012                                     | 

//   Author:        Russ Denney    

//   modified for MDP by STF 25 Apr 2014                          | 

//   Description:   Separate Flow Turbofan engine model                  | 

//                                                                       | 

//------------------------------------------------------------------------ 

 

//---------------------------------------------------------------------------- 

//                    User-Defined Tables and Functions 

//----------------------------------------------------------------------------  

Table PercentPower( real PC ) {  

  PC =      {  50.0, 21.0,  20.0 }  // R. Denney 6-21-05 

  PartPwr = {   1.0, 0.10,  0.05 }  

} 

 

//----------------------------------------------------------------------------  

//                            Model Definition  

//----------------------------------------------------------------------------  

MODELNAME = "2-Spool Separate Flow Turbofan";  

AUTHOR = "R. Denney";  

 

Element FlightConditions Ambient {  

   //alt = 30000;  

   //MN = 0.80;  

   //W = 270.0;  

}  

 

Element Inlet Inlet {  

   Fl_O.MN = 0.5; 

   Subelement ramRecovery S_rec {  // this gives Mil Spec ram recovery vs. Mach 

      eRam = 1.0;  } 

//   eRamBase = 1.00; 

}  

 

Element Duct IGVDuct {  

   Fl_O.MN = 0.4;  

   dPqPbase = 0.000;  

}  

 

Element Compressor Fan {  

   #include <CMGENFan.map> 

 

   Fl_O.MN = 0.4; 

   S_map.effDes = 0.878;  

   S_map.PRdes = 1.68; 

   S_map.RlineMap = 2.00;   

   S_map.NcDes = 1.0;    // set to 1.0 in ncp file R. Denney 6-21-05 

}  

 

Element Splitter Splitter {  



114 

 

   BPR = 5.92;  

   Fl_01.MN = 0.45; // swan neck duct inlet Mach number 

   Fl_02.MN = 0.4;  // bypass duct inlet Mach number 

}  

 

Element Compressor LPC {  

   #include <ncp13.map> 

 

   Fl_O.MN = 0.4;  

   S_map.effDes = 0.890;  

   S_map.NcDes = 1.0;  

   S_map.PRdes = 2.43/1.68;  

   S_map.RlineMap = 2.0;   

}  

 

Element Duct SwanNeckDuct {  

   Fl_O.MN = 0.4;  

   dPqPbase = 0.0;  

}  

 

Element Compressor HPC {  

   #include <CMGENHPC.map> 

 

   Fl_O.MN = 0.4;  

   S_map.effDes = 0.863;  

   S_map.NcDes = 1.0;  

   S_map.PRdes = 11.56;  

   S_map.RlineMap = 2.0;    

 

   InterStageBleedOutPort  Cool3 {    // LPT inlet cooling flow 

     fracBldWork = 0.4; //0.3500; 

     fracBldP = 0.16;   //0.1465; 

     fracBldW = 0.0; 

   }  

   InterStageBleedOutPort  Cool4 {    // LPT exit cooling flow 

     fracBldWork = 0.4; //0.3500; 

     fracBldP = 0.16;   //0.1465; 

     fracBldW = 0.0; 

   } 

 

   InterStageBleedOutPort  CustomerBld {  

     fracBldWork = 0.57;  

     fracBldW = 0.0000;  

   } 

    

   void preexecute() {  

     CustomerBld.fracBldW = 0.0/Fl_I.W;  

   

   }  

}  

 

Element Bleed CDPBld {  

   Fl_O.MN = 0.35; // OGV inlet Mach number   

   WrefName = "HPC.Fl_I.W"; 

 

   BleedOutPort  Cool1 {  
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     fracW = 0.1300;  

   } 

 

   BleedOutPort  Cool2 {  

     fracW = 0.1300;  

   } 

 

}  

 

Element Duct OGVduct {  

   Fl_O.MN = 0.2;  // burner inlet Mach number 

   dPqPbase = 0.0; 

}  

 

Element FuelStart Fuel {  

   LHV = 18400; 

}  

 

Element Burner Burner {  

   TtCombOut = 3090.0;  

   FAR = 0.03576;  

   Wfuel = 2.; 

   effBase = 1.0;  

   dPqPBase = 0.045;  

   Fl_O.MN = 0.10; // required to get a Ps 

 

   //switchBurn = "TEMPERATURE";  

}  

 

Element Turbine HPT {  

   #include <ncp04.map> 

 

   FlowStation FS41;  

 

   Fl_O.MN = 0.4;    

 

   S_map.parmMap = 3.996;    // was 2.80 R. Denney 11-20-07 

   S_map.effDes = 0.891;    

   S_map.parmNcDes = 100;  

   S_map.parmGeomMap = 1.0; 

 

   InterStageBleedInPort  Non_ChargeableBld {  

     Pfract = 1.0;  

   }  

 

   InterStageBleedInPort  ChargeableBld {  

     Pfract = 0.0;  

   } 

}  

 

Element Duct ITTduct {  // Duct used to connect the two turbines for WATE - RKD 4-22-08 

   Fl_O.MN = 0.4;   // Same as HPT 

   dPqPbase = 0.0; 

}  

 

Element Turbine LPT {  
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   #include <ncp05.map> 

 

   Fl_O.MN = 0.4;   // TEGV inlet Mach number 

 

   S_map.parmMap = 2.4944;  // was 2.20 R. Denney 11-20-07 

   S_map.effDes = 0.939;   

   S_map.parmNcDes = 100.;  

   S_map.parmGeomMap = 1.0; 

 

   FlowStation FS49;  

 

   InterStageBleedInPort  Non_ChargeableBld {  

     Pfract = 1.0;  

   }  

 

   InterStageBleedInPort  ChargeableBld {  

     Pfract = 0.0;  

   }  

}  

 

Element Duct TEGVduct {  

   Fl_O.MN = 0.25;   

   dPqPbase = 0.00; 

}  

 

Element Duct Tailpipe {  

   Fl_O.MN = 0.25;   

   dPqPbase = 0.00; 

}  

 

Element Duct BPduct {  

   Fl_O.MN = 0.40;  

   dPqPbase = 0.00; 

}  

 

Element Nozzle Core_Nozzle {  

   switchType = "CONIC"; 

   switchCoef = "CFG"; 

   Cfg = 0.992; 

 

   PsExhName = "Ambient.Ps"; 

} // end Core_Nozzle  

 

Element Nozzle Fan_Nozzle {  

   switchType = "CONIC"; 

   switchCoef = "CFG"; 

   Cfg = 0.979; 

 

   PsExhName = "Ambient.Ps"; 

} // end Fan_Nozzle  

 

Element FlowEnd Core_Nozz_End {  

}  

 

Element FlowEnd Fan_Nozz_End {  

}  
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Element FlowEnd OBsink1 { }  // flow end for customer bleed 

 

Element Shaft1 HP_SHAFT {  

   ShaftInputPort HPC, HPT;  

 

   HPX = 85.0;     

   Nmech = 100.0;  

    

}  

 

Element Shaft1 LP_SHAFT {  

   ShaftInputPort FAN, LPC, LPT;  

 

   Nmech = 100.0; 

}  

 

Element EngPerf Eng {  

 

   real FnFullPower, ThrustTarget, EPR, PC;   

   real EPRtarget; real pcn2max; 

 

   void postexecute() {  

     EPR = LPT.Fl_O.Pt / Fan.Fl_I.Pt ;          // changed to Pt5 from Pt7 R. Denney 6-21-05 

     OPR = HPC.Fl_O.Pt / Fan.Fl_I.Pt ;          // OPR is Pt3 / Pt2 R. Denney 6-21-05 

   }  

}  

 

 

//----------------------------------------------------------------------------  

//       linkPorts 

//---------------------------------------------------------------------------- 

 

linkPorts( "Ambient.Fl_O"       , "Inlet.Fl_I"          , "FS0"   );  

linkPorts( "Inlet.Fl_O"         , "IGVDuct.Fl_I"        , "FS1"   );  

linkPorts( "IGVDuct.Fl_O"       , "Fan.Fl_I"            , "FS2"   );  

linkPorts( "Fan.Fl_O"           , "Splitter.Fl_I"       , "FS21"  );  

linkPorts( "Splitter.Fl_01"     , "LPC.Fl_I"            , "FS23"  );  

linkPorts( "LPC.Fl_O"           , "SwanNeckDuct.Fl_I"   , "FS24"  );  

linkPorts( "SwanNeckDuct.Fl_O"  , "HPC.Fl_I"            , "FS25"  );  

linkPorts( "HPC.Fl_O"           , "CDPBld.Fl_I"         , "FS3"   );  

linkPorts( "CDPBld.Fl_O"        , "OGVduct.Fl_I"        , "FS31"  );  

linkPorts( "OGVduct.Fl_O"       , "Burner.Fl_I"         , "FS32"  );  

linkPorts( "Fuel.Fu_O"          , "Burner.Fu_I"         , "FS36"  );  

linkPorts( "Burner.Fl_O"        , "HPT.Fl_I"            , "FS4"   );  

linkPorts( "HPT.Fl_O"           , "ITTduct.Fl_I"        , "FS45"  );  

linkPorts( "ITTduct.Fl_O"       , "LPT.Fl_I"            , "FS48"  );  

linkPorts( "LPT.Fl_O"           , "TEGVduct.Fl_I"       , "FS5"   );  

linkPorts( "TEGVduct.Fl_O"      , "Tailpipe.Fl_I"       , "FS6"   );  

linkPorts( "Tailpipe.Fl_O"      , "Core_Nozzle.Fl_I"    , "FS7"   );  

linkPorts( "Core_Nozzle.Fl_O"   , "Core_Nozz_End.Fl_I"  , "FS9"   );  

 

// BYPASS linkPorts 

linkPorts( "Splitter.Fl_02"     , "BPduct.Fl_I"         , "FS14"  );  

linkPorts( "BPduct.Fl_O"        , "Fan_Nozzle.Fl_I"     , "FS17"  );  

linkPorts( "Fan_Nozzle.Fl_O"    , "Fan_Nozz_End.Fl_I"   , "FS19"  ); 
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// BLEED linkPorts 

linkPorts("CDPBld.Cool1" ,           "HPT.Non_ChargeableBld", "C_FS41" );  

linkPorts("CDPBld.Cool2"   ,         "HPT.ChargeableBld"    , "C_FS42" );  

linkPorts("HPC.Cool3"      ,      "LPT.Non_ChargeableBld"   , "C_FS48" ); 

linkPorts("HPC.Cool4"      ,         "LPT.ChargeableBld"    , "C_FS49" );  

linkPorts("HPC.CustomerBld"        , "OBsink1.Fl_I"         , "OB_Cust");  

 

// SHAFT linkPorts 

linkPorts( "Fan.Sh_O"           , "LP_SHAFT.FAN"        , "FANwork" );  

linkPorts( "LPC.Sh_O"           , "LP_SHAFT.LPC"        , "LPCwork" );  

linkPorts( "LPT.Sh_O"           , "LP_SHAFT.LPT"        , "LPTwork" );  

linkPorts( "HPT.Sh_O"           , "HP_SHAFT.HPT"        , "HPTwork" );  

linkPorts( "HPC.Sh_O"           , "HP_SHAFT.HPC"        , "HPCwork" );  

 

//----------------------------------------------------------------------------  

//  Solver Sequence 

//---------------------------------------------------------------------------- 
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B4: Setup Function File 

 

//******solver setup for all design points************** 

 

#ifdef TOCdef 

 TOC{setOption ("switchDes","DESIGN"); } 

#endif 

#ifdef TKOdef 

 TKO{setOption ("switchDes","OFFDESIGN"); } 

#endif 

 

#ifdef Cruisedef 

 Cruise{setOption ("switchDes","OFFDESIGN"); } 

#endif 

 

CASE = 1; 

solver.clear(); 

autoSolverSetup(); 

 

solver.defaultTolerance = 0.000000001; 

solver.defaultToleranceType = "FRACTIONAL";  //ABSOLUTE 

solver.maxJacobians = 600; 

solver.maxIterations = 600; 

 

solver.defaultDxLimit = 0.1; 

 

#ifdef TOCdef 

 TOC.Ambient.alt = 30000; 

 TOC.Ambient.MN = 0.8; 

  

 TOC.Burner.switchBurn = "FAR"; 

 TOC.Eng.ThrustTarget = 11000; 

 

 solver.addIndependent( "TOC_ind_W1" );  

 solver.addDependent( "TOC_dep_fntarget" ); 

  

 solver.addIndependent("TOC_ind_FAR"); //vary to meet TKO thrust constrained by most constraining T4 

 solver.addDependent("TKO_dep_fntarget"); 

  

 TOC.Fan.S_map.alpha=0.;                     //set IGV full open  

 TOC.LPC.S_map.alpha=0.;                     //set vgv full open 

 TOC.HPC.S_map.alpha=0.;                     //set stp full open  

 

#endif 

 

#ifdef TKOdef 

 TKO.Ambient.alt = 0; 

 TKO.Ambient.MN = 0.3; 

  

 TKO.Burner.switchBurn = "FAR";  

 TKO.Eng.ThrustTarget = 35000; 

  

 solver.addIndependent("TKO_ind_FAR"); //vary to target fan corrected speed. 

 solver.addDependent( "TKO_dep_pcn2max" ); 
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#endif 

 

#ifdef Cruisedef 

 Cruise.Ambient.alt =28000; 

 Cruise.Ambient.MN = 0.8; 

 Cruise.Burner.switchBurn = "FUEL";  

 Cruise.Eng.ThrustTarget = 10000; 

  

 solver.addIndependent("CR_ind_zwf36");  

 solver.addDependent( "CR_dep_fntarget" ); 

#endif 
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B5: Assembly Setup File 

 

//****************** define assemblies ****************** 

 

#ifdef TOCdef //ON DESIGN point 

 Element Assembly TOC{ 

  #include <SFTF.mdl> 

 OutFileStream pointTOCStream { filename = "pointTOC.viewOut"; }  

  DataViewer PageViewer pointTOC {  

  #include <pointTOC.view> 

  outStreamHandle = "pointTOCStream";} 

 } 

 

#endif 

 

 

#ifdef TKOdef 

 Element Assembly TKO{ 

  #include <SFTF.mdl> 

   

  OutFileStream pointTKOStream { filename = "pointTKO.viewOut"; }  

  DataViewer PageViewer pointTKO {  

  #include <pointTKO.view> 

  outStreamHandle = "pointTKOStream";} 

   

  void preexecute(){ 

   #include <mdp_scalars.int> 

  } 

 } 

 

#endif 

 

 

#ifdef Cruisedef 

 Element Assembly Cruise{ 

  #include <SFTF.mdl> 

   

  OutFileStream pointCRStream { filename = "pointCR.viewOut"; }  

  DataViewer PageViewer pointCR {  

  #include <pointCR.view> 

  outStreamHandle = "pointCRStream";} 

   

  void preexecute(){ 

   #include <mdp_scalars_Cruise.int> 

  } 

 } 

 

#endif 
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B6: MDP Scalars File 

 

Inlet.eRam=TOC.Inlet.eRam; 

Inlet.eRamBase=TOC.Inlet.eRamBase; 

Fan.S_map.s_effDes=TOC.Fan.S_map.s_effDes; 

Fan.S_map.s_NcDes=TOC.Fan.S_map.s_NcDes; 

Fan.S_map.s_PRdes=TOC.Fan.S_map.s_PRdes; 

Fan.S_map.s_WcDes=TOC.Fan.S_map.s_WcDes; 

HPC.S_map.s_effDes=TOC.HPC.S_map.s_effDes; 

HPC.S_map.s_NcDes=TOC.HPC.S_map.s_NcDes; 

HPC.S_map.s_PRdes=TOC.HPC.S_map.s_PRdes; 

HPC.S_map.s_WcDes=TOC.HPC.S_map.s_WcDes; 

LPC.S_map.s_effDes=TOC.LPC.S_map.s_effDes; 

LPC.S_map.s_NcDes=TOC.LPC.S_map.s_NcDes; 

LPC.S_map.s_PRdes=TOC.LPC.S_map.s_PRdes; 

LPC.S_map.s_WcDes=TOC.LPC.S_map.s_WcDes; 

HPT.S_map.s_dPqP=TOC.HPT.S_map.s_dPqP; 

HPT.S_map.s_Np=TOC.HPT.S_map.s_Np; 

HPT.S_map.s_eff=TOC.HPT.S_map.s_eff; 

HPT.S_map.s_effRe=TOC.HPT.S_map.s_effRe; 

HPT.S_map.s_Wp=TOC.HPT.S_map.s_Wp; 

HPT.S_map.s_parmGeom=TOC.HPT.S_map.s_parmGeom; 

HPT.S_map.s_parmMap=TOC.HPT.S_map.s_parmMap; 

LPT.S_map.s_effRe=TOC.LPT.S_map.s_effRe; 

LPT.S_map.s_eff=TOC.LPT.S_map.s_eff; 

LPT.S_map.s_Np=TOC.LPT.S_map.s_Np; 

LPT.S_map.s_dPqP=TOC.LPT.S_map.s_dPqP; 

LPT.S_map.s_Wp=TOC.LPT.S_map.s_Wp; 

LPT.S_map.s_parmMap=TOC.LPT.S_map.s_parmMap; 

LPT.S_map.s_parmGeom=TOC.LPT.S_map.s_parmGeom; 

Ambient.Fl_O.Aphy=TOC.Ambient.Fl_O.Aphy; 

Inlet.Fl_I.Aphy=TOC.Inlet.Fl_I.Aphy; 

Inlet.Fl_O.Aphy=TOC.Inlet.Fl_O.Aphy; 

IGVDuct.Fl_O.Aphy=TOC.IGVDuct.Fl_O.Aphy; 

Fan.Fl_O.Aphy=TOC.Fan.Fl_O.Aphy; 

Splitter.Fl_01.Aphy=TOC.Splitter.Fl_01.Aphy; 

Splitter.Fl_02.Aphy=TOC.Splitter.Fl_02.Aphy; 

SwanNeckDuct.Fl_O.Aphy=TOC.SwanNeckDuct.Fl_O.Aphy; 

HPC.Fl_O.Aphy=TOC.HPC.Fl_O.Aphy; 

LPC.Fl_O.Aphy=TOC.LPC.Fl_O.Aphy; 

CDPBld.Fl_O.Aphy=TOC.CDPBld.Fl_O.Aphy; 

OGVduct.Fl_O.Aphy=TOC.OGVduct.Fl_O.Aphy; 

Burner.Fl_O.Aphy=TOC.Burner.Fl_O.Aphy; 

HPT.Fl_O.Aphy=TOC.HPT.Fl_O.Aphy; 

ITTduct.Fl_O.Aphy=TOC.ITTduct.Fl_O.Aphy; 

LPT.Fl_O.Aphy=TOC.LPT.Fl_O.Aphy; 

TEGVduct.Fl_O.Aphy=TOC.TEGVduct.Fl_O.Aphy; 

BPduct.Fl_O.Aphy=TOC.BPduct.Fl_O.Aphy; 

Tailpipe.Fl_O.Aphy=TOC.Tailpipe.Fl_O.Aphy; 

Core_Nozzle.AthCold=TOC.Core_Nozzle.AthCold; 

Fan_Nozzle.AthCold=TOC.Fan_Nozzle.AthCold; 

CDPBld.Cool1.fracW=TOC.CDPBld.Cool1.fracW; 

CDPBld.Cool2.fracW=TOC.CDPBld.Cool2.fracW; 

HPC.Cool3.fracBldW=TOC.HPC.Cool3.fracBldW; 

HPC.Cool4.fracBldW=TOC.HPC.Cool4.fracBldW; 
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Fan.NcDes=TOC.Fan.NcDes; 

LPC.NcDes=TOC.LPC.NcDes; 

HPC.NcDes=TOC.HPC.NcDes; 

Fan.Nc=TOC.Fan.Nc; 

LPC.Nc=TOC.LPC.Nc; 

HPC.Nc=TOC.HPC.Nc; 

HPT.Nc=TOC.HPT.Nc; 

LPT.Nc=TOC.LPT.Nc; 

HPT.Np=TOC.HPT.Np; 

LPT.Np=TOC.LPT.Np; 

HPT.NpDes=TOC.HPT.NpDes; 

LPT.NpDes=TOC.LPT.NpDes; 

HPT.NpqNpDes=TOC.HPT.NpqNpDes; 

LPT.NpqNpDes=TOC.LPT.NpqNpDes; 

Fan.Ndes=TOC.Fan.Ndes; 

LPC.Ndes=TOC.LPC.Ndes; 

HPC.Ndes=TOC.HPC.Ndes; 

HP_SHAFT.Ndes=TOC.HP_SHAFT.Ndes; 

LP_SHAFT.Ndes=TOC.LP_SHAFT.Ndes; 

Fan.S_map.NcDes=TOC.Fan.S_map.NcDes; 

HPC.S_map.NcDes=TOC.HPC.S_map.NcDes; 

LPC.S_map.NcDes=TOC.LPC.S_map.NcDes; 

Fan.S_map.WcDes=TOC.Fan.S_map.WcDes; 

Fan.S_map.ReDes=TOC.Fan.S_map.ReDes; 

HPC.S_map.WcDes=TOC.HPC.S_map.WcDes; 

HPC.S_map.ReDes=TOC.HPC.S_map.ReDes; 

LPC.S_map.WcDes=TOC.LPC.S_map.WcDes; 

LPC.S_map.ReDes=TOC.LPC.S_map.ReDes; 

LPT.S_map.PtMap=TOC.LPT.S_map.PtMap; 

LPT.S_map.effDes=TOC.LPT.S_map.effDes; 

LPT.S_map.parmMapDes=TOC.LPT.S_map.parmMapDes; 

LPT.S_map.parmNcDes=TOC.LPT.S_map.parmNcDes; 

LPT.S_map.effMap=TOC.LPT.S_map.effMap; 

LPT.S_map.parmGeomMap=TOC.LPT.S_map.parmGeomMap; 

HP_SHAFT.HPX=TOC.HP_SHAFT.HPX; 

HPT.S_map.PtMap=TOC.HPT.S_map.PtMap; 

HPT.S_map.effDes=TOC.HPT.S_map.effDes; 

HPT.S_map.parmMapDes=TOC.HPT.S_map.parmMapDes; 

HPT.S_map.parmNcDes=TOC.HPT.S_map.parmNcDes; 

HPT.S_map.effMap=TOC.HPT.S_map.effMap; 

HPT.S_map.parmGeomMap=TOC.HPT.S_map.parmGeomMap; 
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B7: SFTF Function File 

 

//******************************************************************** 

//Title:       SFTF model function file 

//Author:      STF 

//Modified:    by STF for MDP 

//              

//Description: This file sets up the variables and functions 

//             for a simple SFTF model.   

//******************************************************************** 

 

real zfnDesign {  

   value        = 25000.0;   

   units        = "lbf"; 

   description  = "SLS std day uninstalled design thrust"; 

   iDescription = " "; 

} 

 

//Maximum limits ---------------------------------------------------------- 

 

real pcn2max {  

   value        = 100.0;   // run to 100% corrected fan speed unless over-ridden 

   units        = "none"; 

   description  = "Max percent corrected low spool RPM"; 

   iDescription = ""; 

} 

real t4max {  

   value        = 4500.;  // set out of the way    

   units        = "R"; 

   description  = "Max allowable turbine inlet temperature"; 

   iDescription = "Max allowable average temperature at stn 4"; 

} 

real t41max {  

   value        = 3000.+459.67;  

   units        = "R"; 

   description  = "Max allowable turbine inlet temperature"; 

   iDescription = "Max allowable average temperature at stn 41"; 

} 

 

//Upper and lower bounds on independents ------------------------------------ 

 

real zwf36min {  

   value        = 0.15; 

   units        = "lbm/sec"; 

   description  = "Min allowable fuel flow rate"; 

   iDescription = "Usually set by fuel sys hrdwr & pilot stability"; 

} 

real zwf36max {  

   value        = 10.0;             // was 5.0 R. Denney 6-15-04 

   units        = "lbm/sec"; 

   description  = "Max allowable fuel flow rate"; 

   iDescription = "Usually set by fuel system hardware"; 

} 

real za8min {  

   value        = 600.0; 
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   units        = "in2"; 

   description  = "Min allowable nozzle throat area"; 

   iDescription = "Usually set by nozzle mechanical limits"; 

} 

real za8max {  

   value        = 800.0; 

   units        = "in2"; 

   description  = "Max allowable nozzle throat area"; 

   iDescription = "Usually set by nozzle mechanical limits"; 

} 

 

#ifdef TOCdef 

 

 Independent TOC_ind_W1 { varName = "TOC.Ambient.W";} 

 Independent TOC_ind_BPR {varName = "TOC.Splitter.BPR";} 

 Independent TOC_ind_FAR { varName = "TOC.Burner.FAR"; }  

 

 Dependent TOC_dep_fntarget { eq_lhs="TOC.Eng.Fn"; eq_rhs="TOC.Eng.ThrustTarget";} 

 Dependent TOC_MAX_T4 { eq_lhs = "TOC.HPT.Fl_I.Tt"; eq_rhs = "3250.0"; }  

  

#endif 

 

#ifdef TKOdef 

 Independent TKO_ind_FAR { varName = "TKO.Burner.FAR"; dxLimitType="ABSOLUTE";}  

 

 Dependent TKO_MAX_T4 { eq_lhs = "TKO.HPT.Fl_I.Tt"; eq_rhs = "3250.0"; }    

 Dependent TKO_dep_fntarget { eq_lhs="TKO.Eng.Fn"; eq_rhs="TKO.Eng.ThrustTarget";} 

 Dependent TKO_dep_pcn2max { eq_lhs="TKO.Fan.NcqNcDesPct"; eq_rhs="TOC.Fan.NcqNcDesPct";                  

   constraintNameList = {"TKO_MAX_T4","TOC_MAX_T4"};   

   limitTypes={"MAX","MAX"};} 

#endif 

 

#ifdef Cruisedef 

 Independent CR_ind_zwf36 { varName = "Cruise.Burner.Wfuel"; indepRef= "zwf36max-zwf36min"; 

  dxLimit=0.02*(zwf36max-zwf36min); 

  dxLimitType="ABSOLUTE";} 

 

 Independent CR_ind_FAR { varName = "Cruise.Burner.FAR"; dxLimitType="ABSOLUTE";}  

 

 Dependent CR_dep_fntarget { eq_lhs="Cruise.Eng.Fn"; eq_rhs="Cruise.Eng.ThrustTarget";} 

#endif 

 

void write_indeps() 

{ 

 

 OutFileStream current_guess; 

 current_guess.open("current_guess.cs"); 

  

 current_guess << "  TOC.HPT.S_map.parmMap     

 " << " = " << toStr(TOC.HPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  TOC.Ambient.W       

 " << " = " << toStr(TOC.Ambient.W,10) << ";\n" ; 

 current_guess << "  TOC.LPT.S_map.parmMap     

 " << " = " << toStr(TOC.LPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  TOC.Burner.FAR       

 " << " = " << toStr(TOC.Burner.FAR,10) << ";\n" ; 
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 current_guess << "  TKO.Ambient.W       

 " << " = " << toStr(TKO.Ambient.W,10) << ";\n" ; 

 current_guess << "  TKO.Fan.S_map.RlineMap     

 " << " = " << toStr(TKO.Fan.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  TKO.HPC.S_map.RlineMap     

 " << " = " << toStr(TKO.HPC.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  TKO.HPT.S_map.parmMap     

 " << " = " << toStr(TKO.HPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  TKO.HP_SHAFT.Nmech      

 " << " = " << toStr(TKO.HP_SHAFT.Nmech,10) << ";\n" ; 

 current_guess << "  TKO.LPC.S_map.RlineMap     

 " << " = " << toStr(TKO.LPC.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  TKO.LPT.S_map.parmMap     

 " << " = " << toStr(TKO.LPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  TKO.LP_SHAFT.Nmech      

 " << " = " << toStr(TKO.LP_SHAFT.Nmech,10) << ";\n" ; 

 current_guess << "  TKO.Splitter.BPR      

 " << " = " << toStr(TKO.Splitter.BPR,10) << ";\n" ; 

 current_guess << "  TKO.Burner.FAR       

 " << " = " << toStr(TKO.Burner.FAR,10) << ";\n" ; 

 

 current_guess << "  Cruise.Ambient.W       

 " << " = " << toStr(Cruise.Ambient.W,10) << ";\n" ; 

 current_guess << "  Cruise.Fan.S_map.RlineMap     

 " << " = " << toStr(Cruise.Fan.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  Cruise.HPC.S_map.RlineMap     

 " << " = " << toStr(Cruise.HPC.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  Cruise.HPT.S_map.parmMap     

 " << " = " << toStr(Cruise.HPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  Cruise.HP_SHAFT.Nmech      

 " << " = " << toStr(Cruise.HP_SHAFT.Nmech,10) << ";\n" ; 

 current_guess << "  Cruise.LPC.S_map.RlineMap     

 " << " = " << toStr(Cruise.LPC.S_map.RlineMap,10) << ";\n" ; 

 current_guess << "  Cruise.LPT.S_map.parmMap     

 " << " = " << toStr(Cruise.LPT.S_map.parmMap,10) << ";\n" ; 

 current_guess << "  Cruise.LP_SHAFT.Nmech      

 " << " = " << toStr(Cruise.LP_SHAFT.Nmech,10) << ";\n" ; 

 current_guess << "  Cruise.Splitter.BPR      

 " << " = " << toStr(Cruise.Splitter.BPR,10) << ";\n" ; 

 current_guess << "  Cruise.Burner.Wfuel      

 " << " = " << toStr(Cruise.Burner.Wfuel,10) << ";\n" ; 

 current_guess << "  Cruise.Fan_Nozzle.AthCold     

 " << " = " << toStr(Cruise.Fan_Nozzle.AthCold ,10) << ";\n" ; 

 //current_guess << "  Cruise.Core_Nozzle.AthCold     "

 << " = " << toStr(Cruise.Core_Nozzle.AthCold ,10) << ";\n" ; 

 current_guess.close(); 

} 
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